《超越学科的认知基础》2015张世超学习报告第六周
来自iCenter Wiki
关键词
Mathematica[1]
学习报告
Mathematica 指令表
Mathematica 指令表 | |||||||||
---|---|---|---|---|---|---|---|---|---|
操作 | 指令 | ||||||||
enter i | type esc-ii-esc | ||||||||
enter square root | control -2 | ||||||||
enter "e" | esc-ee-esc | ||||||||
power | control-6 | ||||||||
fraction | control-forwardslash | ||||||||
evaluate | shift-return | ||||||||
new line | return | ||||||||
alias for the last output expression | % | ||||||||
make substitution | /. | ||||||||
Expand | Expand[ ] | ||||||||
Simplify x²+(2x²+sin(x)) | Simplify[x²+(2x²+sin[x])] | ||||||||
Factorise | Factor[x²-1] | ||||||||
Evaluate πto decimal places | N[π,100] | ||||||||
poly=1+3x+5x³+6sin[x] | poly=1+3x+5x³+6sin[x] | ||||||||
extract the coefficient | Coefficient[poly,x²] | ||||||||
Solve the equation z=x²+1 for x (remember to use == not =)eeeeeeeeeeeeeeeeeee | z==x²+1 | ||||||||
Solve the system of equations:x+y+z=1 x-y=2 | Solve[x+y+z==1&&x-y==2,{x,y,z}] | ||||||||
complex numbers | |||||||||
absolute value | Abs[z] | ||||||||
Argument value | Arg[z] | ||||||||
Complex conjugate | Conjugate[z] | ||||||||
Imaginary | Im[z] | ||||||||
real component | Re[z] | ||||||||
Linear algebra | Define a 2*2 matrix A with elements 1,2,3,4 and a 2 element vector v with element v1 and v2. | A={[1,2],[3,4]} v={v1,v2} A//MatrixForm | |||||||
Determinant | Det[A] | ||||||||
Mutiply the matrix A by the Vector v. | A.v %//MatrixForm | ||||||||
Inverse | Inverse[A]//MatrixForm | ||||||||
MatrixPower | [A,2]//MatrixForm or A²//MatrixForm | ||||||||
Transpose | Transpose[A]//MatrixForm | ||||||||
Extract | A1//MatrixForm | ||||||||
Make a 10×10 matrix and automatically populate if with a formula. | M=Table[i*j+sin[i+j},{i,1,10},{j,1,10}];M//MatrixForm | ||||||||
data={1,2,3,4,5} | av2[v_]:=Total[v]/Length[v];av2[data] | ||||||||
Function | |||||||||
Define a function;f[x_]:=cos[x]+sin[x];g[x_]:=cos[x]-2; | Evaluate+for x =1;N[f[1],500] | ||||||||
Average:Write a function av(v) | evaluate it for {1,2,3,4,5} | ||||||||
Plotting | |||||||||
Plot the function sin(x) in the range 0<x<5 | Plot [sin[x],{x,0,5}] | ||||||||
Superimpose the plots of sin(x) and cos(x) | Plot[{sin[x],cos[x]},{x,0,10}] | ||||||||
Make a 3D plot of sin(x)cosxy over the range 0<x<5,0<y<5 | Plot 3D[sin[x]Cos[y],{x,0,5},{y,0,5}] | ||||||||
Change the font size and disale the mesh | Plot3D[sin[x]cos[y],{x,0,5},{y,0,5}] BaseStyle→{FontSize→14} | ||||||||
Make a density plot | DensityPlot[sin[x]cos[y],{x,0,5}] | ||||||||
Make a parametric plot in 3D x=cos(t), y=sin(t) z=t {t,0,4π}] | ParametricPlot3D[{cos[t],sin[t],t] | ||||||||
Calculus | |||||||||
Solving the differential equations | Dsolve[ ] | ||||||||
Derivatives | D[sin[x],x] | ||||||||
Take the indefinite integral | Integrate[sin[x],x] | ||||||||
Sums | |||||||||
Add up number i² from 0≤i≤n | Sum[i²,{i,1,n}] | ||||||||
Flow control | |||||||||
Step function,if x>0, +1,if x<0 -1,if x=0 ,1 | d[x_]:=If[x>0,1,0] d[1],d[-1] |