“2018秋-智能硬件-第11次课-教学计划”版本间的差异
来自iCenter Wiki
第22行: | 第22行: | ||
https://docs.nvidia.com/deeplearning/dgx/install-tf-jetsontx2/index.html#benefits | https://docs.nvidia.com/deeplearning/dgx/install-tf-jetsontx2/index.html#benefits | ||
− | YOLO实现 | + | YOLO实现/Jetson TX2 |
TensorFlow/Keras-Yolo3: | TensorFlow/Keras-Yolo3: | ||
第35行: | 第35行: | ||
https://github.com/ne7ermore/yolo-v3 | https://github.com/ne7ermore/yolo-v3 | ||
+ | |||
+ | Have fun~! |
2018年12月3日 (一) 16:02的版本
回顾机器人
如何让机器人拥有视觉,自主行动?
先进的硬件,还需要强大的软件配合
计算机视觉
YOLO算法/SSD算法
JetsonKit TX2
https://blogs.nvidia.com/blog/category/autonomous-machines/
https://developer.nvidia.com/embedded-computing
https://developer.nvidia.com/embedded/jetpack
https://developer.nvidia.com/embedded/develop/tools
https://docs.nvidia.com/deeplearning/dgx/install-tf-jetsontx2/index.html#benefits
YOLO实现/Jetson TX2
TensorFlow/Keras-Yolo3:
https://github.com/qqwweee/keras-yolo3
https://jkjung-avt.github.io/jetpack-3.3/
https://jkjung-avt.github.io/yolov3/
pytorch实现:
https://github.com/ne7ermore/yolo-v3
Have fun~!