“增强学习-入门导读”版本间的差异

来自iCenter Wiki
跳转至: 导航搜索
AlphaGo计算机围棋
教材
第3行: 第3行:
 
增强学习 or 强化学习经典教材
 
增强学习 or 强化学习经典教材
  
#An Introduction to Reinforcement Learning [http://webdocs.cs.ualberta.ca/~sutton/book/the-book.html Intro_RL]
+
#Richard S. Sutton, Andrew Barto, An Introduction to Reinforcement Learning, MIT Press, 1998.
#Algorithms for Reinforcement Learning [http://www.ualberta.ca/~szepesva/papers/RLAlgsInMDPs.pdf RLAlgsInMDPs]
+
[http://webdocs.cs.ualberta.ca/~sutton/book/the-book.html Intro_RL]
 +
#Csaba Szepesvari, Algorithms for Reinforcement Learning, Synthesis lectures on artificial intelligence and machine learning 4, no. 1 (2010): 1-103. [http://www.ualberta.ca/~szepesva/papers/RLAlgsInMDPs.pdf RLAlgsInMDPs]
  
 
==研究==
 
==研究==

2017年1月17日 (二) 10:06的版本

增强学习入门

教材

增强学习 or 强化学习经典教材

  1. Richard S. Sutton, Andrew Barto, An Introduction to Reinforcement Learning, MIT Press, 1998.

Intro_RL

  1. Csaba Szepesvari, Algorithms for Reinforcement Learning, Synthesis lectures on artificial intelligence and machine learning 4, no. 1 (2010): 1-103. RLAlgsInMDPs

研究

AlphaGo计算机围棋

蒙特卡洛树搜索(Monte-Carlo tree search)

Bandit based monte-carlo planning, ecml 2006.
Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search, CG 2006.
Combining Online and Offline Knowledge in UCT, ICML 2007.


  • Monte-Carlo tree search and rapid action value estimation in computer Go, artificial intelligence, Elsevier 2011.


神经网络

Mimicking Go Experts with Convolutional Neural Networks, ICANN 2008.
  • Training Deep Convolutional Neural Networks to Play Go, icml 2015.

进展

Achieving Master Level Play in 9 × 9 Computer Go, AAAI 2008.
The grand challenge of computer Go Monte Carlo tree search and extensions, cacm 2012.


  • Mastering the game of Go with deep neural networks and tree search, nature 2016.