“增强学习-入门导读”版本间的差异

来自iCenter Wiki
跳转至: 导航搜索
教材
AlphaGo计算机围棋
第9行: 第9行:
  
 
===<B>AlphaGo计算机围棋</B>===
 
===<B>AlphaGo计算机围棋</B>===
 +
 +
蒙特卡洛树搜索(Monte-Carlo tree search)
  
 
:Bandit based monte-carlo planning, ecml 2006.
 
:Bandit based monte-carlo planning, ecml 2006.
第16行: 第18行:
 
:Combining Online and Offline Knowledge in UCT, ICML 2007.
 
:Combining Online and Offline Knowledge in UCT, ICML 2007.
  
:Achieving Master Level Play in 9 × 9 Computer Go, AAAI 2008.
+
 
 +
*Monte-Carlo tree search and rapid action value estimation in computer Go, artificial intelligence, Elsevier 2011.
 +
 
 +
 
 +
神经网络
  
 
:Mimicking Go Experts with Convolutional Neural Networks, ICANN 2008.
 
:Mimicking Go Experts with Convolutional Neural Networks, ICANN 2008.
  
*Monte-Carlo tree search and rapid action value estimation in computer Go, artificial intelligence, Elsevier 2011.
+
*Training Deep Convolutional Neural Networks to Play Go, icml 2015.
 +
 
 +
进展
 +
:Achieving Master Level Play in 9 × 9 Computer Go, AAAI 2008.
  
 
:The grand challenge of computer Go Monte Carlo tree search and extensions, cacm 2012.
 
:The grand challenge of computer Go Monte Carlo tree search and extensions, cacm 2012.
  
*Training Deep Convolutional Neural Networks to Play Go, icml 2015.
 
  
 
*Mastering the game of Go with deep neural networks and tree search, nature 2016.
 
*Mastering the game of Go with deep neural networks and tree search, nature 2016.

2017年1月17日 (二) 01:36的版本

增强学习入门

教材

增强学习 or 强化学习经典教材

  1. An Introduction to Reinforcement Learning Intro_RL
  2. Algorithms for Reinforcement Learning RLAlgsInMDPs

研究

AlphaGo计算机围棋

蒙特卡洛树搜索(Monte-Carlo tree search)

Bandit based monte-carlo planning, ecml 2006.
Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search, CG 2006.
Combining Online and Offline Knowledge in UCT, ICML 2007.


  • Monte-Carlo tree search and rapid action value estimation in computer Go, artificial intelligence, Elsevier 2011.


神经网络

Mimicking Go Experts with Convolutional Neural Networks, ICANN 2008.
  • Training Deep Convolutional Neural Networks to Play Go, icml 2015.

进展

Achieving Master Level Play in 9 × 9 Computer Go, AAAI 2008.
The grand challenge of computer Go Monte Carlo tree search and extensions, cacm 2012.


  • Mastering the game of Go with deep neural networks and tree search, nature 2016.