“深度学习-入门导读”版本间的差异

来自iCenter Wiki
跳转至: 导航搜索
Nature/Science
斯坦福
第4行: 第4行:
  
 
==斯坦福==
 
==斯坦福==
Andrew Ng实验室
+
# Andrew Ng实验室 [http://deeplearning.stanford.edu/tutorial/ DL11-2015] [http://ufldl.stanford.edu/tutorial/ DL22-2015]
[http://deeplearning.stanford.edu/tutorial/ DL11]
+
[http://ufldl.stanford.edu/tutorial/ DL22]
+
  
 
# Stanford Deep Learning tutorials [http://ufldl.stanford.edu/wiki/index.php/UFLDL_Tutorial DL_tutorials]
 
# Stanford Deep Learning tutorials [http://ufldl.stanford.edu/wiki/index.php/UFLDL_Tutorial DL_tutorials]

2017年1月15日 (日) 04:38的版本

入门导读

深度学习教程。

斯坦福

  1. Andrew Ng实验室 DL11-2015 DL22-2015
  1. Stanford Deep Learning tutorials DL_tutorials

谷歌

Jeff Dean谷歌大脑

  1. Jeff Dean, Large-Scale Deep Learning for Intelligent Computer Systems, WSDM 2016. WSDM_keynote
  2. Jeffrey Dean et al. "Large scale distributed deep networks." Advances in Neural Information Processing Systems. 2012.
  3. TensorFlow: A System for Large-Scale Machine Learning, OSDI 2016. TensorFlow_OSDI2016_paper TensorFlow_paper

Nature/Science

  1. DAVID E. RUMELHART, GEOFFREY E. HINTON & RONALD J. WILLIAMS, Learning representations by back-propagating errors, Nature 323, 533 - 536,09 October 1986. SGD
  2. LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning." Nature 521(7553), pp:436-444, 2015. Deep_Learning_Nature

书籍

  1. Yoshua Bengio, Ian Goodfellow, Aaron Courville, Deep Learning, MIT Press, 2016. DeepLearningBook