“深度学习-入门导读”版本间的差异
来自iCenter Wiki
(→Nature/Science) |
(→斯坦福) |
||
第4行: | 第4行: | ||
==斯坦福== | ==斯坦福== | ||
− | Andrew Ng实验室 | + | # Andrew Ng实验室 [http://deeplearning.stanford.edu/tutorial/ DL11-2015] [http://ufldl.stanford.edu/tutorial/ DL22-2015] |
− | [http://deeplearning.stanford.edu/tutorial/ DL11] | + | |
− | [http://ufldl.stanford.edu/tutorial/ DL22] | + | |
# Stanford Deep Learning tutorials [http://ufldl.stanford.edu/wiki/index.php/UFLDL_Tutorial DL_tutorials] | # Stanford Deep Learning tutorials [http://ufldl.stanford.edu/wiki/index.php/UFLDL_Tutorial DL_tutorials] |
2017年1月15日 (日) 04:38的版本
入门导读
深度学习教程。
斯坦福
- Stanford Deep Learning tutorials DL_tutorials
谷歌
Jeff Dean谷歌大脑
- Jeff Dean, Large-Scale Deep Learning for Intelligent Computer Systems, WSDM 2016. WSDM_keynote
- Jeffrey Dean et al. "Large scale distributed deep networks." Advances in Neural Information Processing Systems. 2012.
- TensorFlow: A System for Large-Scale Machine Learning, OSDI 2016. TensorFlow_OSDI2016_paper TensorFlow_paper
Nature/Science
- DAVID E. RUMELHART, GEOFFREY E. HINTON & RONALD J. WILLIAMS, Learning representations by back-propagating errors, Nature 323, 533 - 536,09 October 1986. SGD
- LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning." Nature 521(7553), pp:436-444, 2015. Deep_Learning_Nature
书籍
- Yoshua Bengio, Ian Goodfellow, Aaron Courville, Deep Learning, MIT Press, 2016. DeepLearningBook