“大数据智能”版本间的差异

来自iCenter Wiki
跳转至: 导航搜索
三个层面
第1行: 第1行:
 
+
==人工智能定义==
===人工智能定义===
+
  
 
人工智能,是指计算机系统具备从听说读写到搜索、推理、决策和回答问题等类人智能的能力
 
人工智能,是指计算机系统具备从听说读写到搜索、推理、决策和回答问题等类人智能的能力
第6行: 第5行:
 
感知、理解、决策
 
感知、理解、决策
  
===人工智能历史===
+
==人工智能历史==
  
 
过去经历了2次高潮与2次低谷
 
过去经历了2次高潮与2次低谷
第15行: 第14行:
  
 
阅读材料:
 
阅读材料:
#The rebirth of neural networks-ISCA-2010 [http://pages.saclay.inria.fr/olivier.temam/homepage/ISCA2010web.pdf rebirth_NN]
 
  
===国际研究===
+
# The rebirth of neural networks-ISCA-2010 [http://pages.saclay.inria.fr/olivier.temam/homepage/ISCA2010web.pdf rebirth_NN]
[http://research.google.com/teams/brain/ Googel_Brain]  Jeff Dean [http://research.google.com/pubs/jeff.html Jeff Dean] <br />
+
  
[https://research.facebook.com/ai Facebook_AI-Research] (Yann LeCun)
+
==国际研究==
  
[https://www.openai.com/blog/ OpenAI] (Ilya Sutskever)
+
[http://research.google.com/teams/brain/ Googel_Brain]
 +
([http://research.google.com/pubs/jeff.html Jeff Dean])
  
===四个层面===
+
[https://research.facebook.com/ai Facebook_AI-Research]
 +
(Yann LeCun)
  
====目标与功能分类====
+
[https://www.openai.com/blog/ OpenAI]
 +
(Ilya Sutskever)
 +
 
 +
==四个层面==
 +
 
 +
===目标与功能分类===
  
 
语音识别 机器视觉 智能问答
 
语音识别 机器视觉 智能问答
----
+
 
====核心技术分类====
+
===核心技术分类===
  
 
特定算法 机器学习算法 深度神经网络
 
特定算法 机器学习算法 深度神经网络
----
 
  
====软件工具====
+
===软件工具===
TensorFlow/Caffe/Torch/
+
TensorFlow / Caffe / Torch
----
+
  
====底层硬件分类====
+
===底层硬件分类===
  
 
可编程逻辑阵列 FPGA  / 通用图形处理器 GPGPU / 通用处理器 CPU 群集
 
可编程逻辑阵列 FPGA  / 通用图形处理器 GPGPU / 通用处理器 CPU 群集
----
 
  
===机器感知===
+
==机器感知==
  
====语音识别====
+
===语音识别===
  
 
语音识别(Automatic Speech Recognition),简称ASR
 
语音识别(Automatic Speech Recognition),简称ASR
  
Google Speech Processing from Mobile to Farfield, CHiME 2016.  
+
# Google Speech Processing from Mobile to Farfield, CHiME 2016. [http://spandh.dcs.shef.ac.uk/chime_workshop/presentations/CHiME_2016_Bacchiani_keynote.pdf Google_Speech_Processing]
[http://spandh.dcs.shef.ac.uk/chime_workshop/presentations/CHiME_2016_Bacchiani_keynote.pdf Google_Speech_Processing]
+
 
----
+
===计算机视觉===
====计算机视觉====
+
  
 
计算机视觉(Computer Vision),简称 CV
 
计算机视觉(Computer Vision),简称 CV
----
+
 
====自然语言理解====
+
===自然语言理解===
  
 
自然语言理解(Natural Language Processing),简称NLP
 
自然语言理解(Natural Language Processing),简称NLP
----
 
  
===机器学习===
+
==机器学习==
 +
 
 +
Machine Learning
  
Machine Learning [http://scikit-learn.org scikit-learn]
+
[http://scikit-learn.org scikit-learn]
  
 
# Jordan, M. I., and T. M. Mitchell. "Machine learning: Trends, perspectives, and prospects." Science 349, no. 6245 (2015): 255-260. [http://science.sciencemag.org/content/349/6245/255 Machine_learning_science_2015]
 
# Jordan, M. I., and T. M. Mitchell. "Machine learning: Trends, perspectives, and prospects." Science 349, no. 6245 (2015): 255-260. [http://science.sciencemag.org/content/349/6245/255 Machine_learning_science_2015]
  
===深度神经网络===
+
==深度神经网络==
  
 
[[卷积神经网络]]
 
[[卷积神经网络]]
第80行: 第81行:
 
# LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning." Nature 521(7553), pp:436-444, 2015. [http://www.nature.com/nature/journal/v521/n7553/full/nature14539.html Deep_Learning_Nature]
 
# LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning." Nature 521(7553), pp:436-444, 2015. [http://www.nature.com/nature/journal/v521/n7553/full/nature14539.html Deep_Learning_Nature]
 
# Jeff Dean, Large-Scale Deep Learning for Intelligent Computer Systems, WSDM 2016. [http://research.google.com/pubs/jeff.html WSDM_keynote]
 
# Jeff Dean, Large-Scale Deep Learning for Intelligent Computer Systems, WSDM 2016. [http://research.google.com/pubs/jeff.html WSDM_keynote]
# Jeffrey Dean et al. "Large scale distributed deep networks." Advances in Neural Information Processing Systems. 2012.
+
# Jeffrey Dean et al. "Large scale distributed deep networks." Advances in Neural Information Processing Systems. 2012.
# TensorFlow: A System for Large-Scale Machine Learning, OSDI 2016.[https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf TensorFlow_OSDI2016_paper] [http://research.google.com/pubs/pub45381.html TensorFlow_paper]
+
# TensorFlow: A System for Large-Scale Machine Learning, OSDI 2016. [https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf TensorFlow_OSDI2016_paper] [http://research.google.com/pubs/pub45381.html TensorFlow_paper]
 
+
  
===深度学习工具===
+
==深度学习工具==
  
====谷歌====
+
===谷歌===
  
 
[http://download.tensorflow.org/paper/whitepaper2015.pdf Google_TensorFlow_whitepaper]
 
[http://download.tensorflow.org/paper/whitepaper2015.pdf Google_TensorFlow_whitepaper]
第92行: 第92行:
 
[https://github.com/tensorflow/tensorflow TensorFlow]
 
[https://github.com/tensorflow/tensorflow TensorFlow]
  
====百度====
+
===百度===
  
 
[https://github.com/dmlc/mxnet dmlc_mxnet]
 
[https://github.com/dmlc/mxnet dmlc_mxnet]
  
===智能问答===
+
==智能问答==
  
 
[[实验室探究课-智能问答与智能系统]]
 
[[实验室探究课-智能问答与智能系统]]

2016年11月7日 (一) 16:32的版本

人工智能定义

人工智能,是指计算机系统具备从听说读写到搜索、推理、决策和回答问题等类人智能的能力

感知、理解、决策

人工智能历史

过去经历了2次高潮与2次低谷

网络和云计算所支持的计算能力

基于大数据的机器学习的算法进步

阅读材料:

  1. The rebirth of neural networks-ISCA-2010 rebirth_NN

国际研究

Googel_Brain (Jeff Dean)

Facebook_AI-Research (Yann LeCun)

OpenAI (Ilya Sutskever)

四个层面

目标与功能分类

语音识别 机器视觉 智能问答

核心技术分类

特定算法 机器学习算法 深度神经网络

软件工具

TensorFlow / Caffe / Torch

底层硬件分类

可编程逻辑阵列 FPGA / 通用图形处理器 GPGPU / 通用处理器 CPU 群集

机器感知

语音识别

语音识别(Automatic Speech Recognition),简称ASR

  1. Google Speech Processing from Mobile to Farfield, CHiME 2016. Google_Speech_Processing

计算机视觉

计算机视觉(Computer Vision),简称 CV

自然语言理解

自然语言理解(Natural Language Processing),简称NLP

机器学习

Machine Learning

scikit-learn

  1. Jordan, M. I., and T. M. Mitchell. "Machine learning: Trends, perspectives, and prospects." Science 349, no. 6245 (2015): 255-260. Machine_learning_science_2015

深度神经网络

卷积神经网络

Deep Neural Networks,简称DNN

Stanford Deep Learning tutorials DL_tutorials

入门导读

  1. LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning." Nature 521(7553), pp:436-444, 2015. Deep_Learning_Nature
  2. Jeff Dean, Large-Scale Deep Learning for Intelligent Computer Systems, WSDM 2016. WSDM_keynote
  3. Jeffrey Dean et al. "Large scale distributed deep networks." Advances in Neural Information Processing Systems. 2012.
  4. TensorFlow: A System for Large-Scale Machine Learning, OSDI 2016. TensorFlow_OSDI2016_paper TensorFlow_paper

深度学习工具

谷歌

Google_TensorFlow_whitepaper

TensorFlow

百度

dmlc_mxnet

智能问答

实验室探究课-智能问答与智能系统