“大数据智能”版本间的差异
来自iCenter Wiki
(→三个层面) |
|||
第1行: | 第1行: | ||
− | + | ==人工智能定义== | |
− | + | ||
人工智能,是指计算机系统具备从听说读写到搜索、推理、决策和回答问题等类人智能的能力 | 人工智能,是指计算机系统具备从听说读写到搜索、推理、决策和回答问题等类人智能的能力 | ||
第6行: | 第5行: | ||
感知、理解、决策 | 感知、理解、决策 | ||
− | + | ==人工智能历史== | |
过去经历了2次高潮与2次低谷 | 过去经历了2次高潮与2次低谷 | ||
第15行: | 第14行: | ||
阅读材料: | 阅读材料: | ||
− | |||
− | + | # The rebirth of neural networks-ISCA-2010 [http://pages.saclay.inria.fr/olivier.temam/homepage/ISCA2010web.pdf rebirth_NN] | |
− | [http:// | + | |
− | + | ==国际研究== | |
− | [ | + | [http://research.google.com/teams/brain/ Googel_Brain] |
+ | ([http://research.google.com/pubs/jeff.html Jeff Dean]) | ||
− | + | [https://research.facebook.com/ai Facebook_AI-Research] | |
+ | (Yann LeCun) | ||
− | ==== | + | [https://www.openai.com/blog/ OpenAI] |
+ | (Ilya Sutskever) | ||
+ | |||
+ | ==四个层面== | ||
+ | |||
+ | ===目标与功能分类=== | ||
语音识别 机器视觉 智能问答 | 语音识别 机器视觉 智能问答 | ||
− | + | ||
− | + | ===核心技术分类=== | |
特定算法 机器学习算法 深度神经网络 | 特定算法 机器学习算法 深度神经网络 | ||
− | |||
− | + | ===软件工具=== | |
− | TensorFlow/Caffe/Torch | + | TensorFlow / Caffe / Torch |
− | + | ||
− | + | ===底层硬件分类=== | |
可编程逻辑阵列 FPGA / 通用图形处理器 GPGPU / 通用处理器 CPU 群集 | 可编程逻辑阵列 FPGA / 通用图形处理器 GPGPU / 通用处理器 CPU 群集 | ||
− | |||
− | + | ==机器感知== | |
− | + | ===语音识别=== | |
语音识别(Automatic Speech Recognition),简称ASR | 语音识别(Automatic Speech Recognition),简称ASR | ||
− | Google Speech Processing from Mobile to Farfield, CHiME 2016. | + | # Google Speech Processing from Mobile to Farfield, CHiME 2016. [http://spandh.dcs.shef.ac.uk/chime_workshop/presentations/CHiME_2016_Bacchiani_keynote.pdf Google_Speech_Processing] |
− | [http://spandh.dcs.shef.ac.uk/chime_workshop/presentations/CHiME_2016_Bacchiani_keynote.pdf Google_Speech_Processing] | + | |
− | + | ===计算机视觉=== | |
− | + | ||
计算机视觉(Computer Vision),简称 CV | 计算机视觉(Computer Vision),简称 CV | ||
− | + | ||
− | + | ===自然语言理解=== | |
自然语言理解(Natural Language Processing),简称NLP | 自然语言理解(Natural Language Processing),简称NLP | ||
− | |||
− | + | ==机器学习== | |
+ | |||
+ | Machine Learning | ||
− | + | [http://scikit-learn.org scikit-learn] | |
# Jordan, M. I., and T. M. Mitchell. "Machine learning: Trends, perspectives, and prospects." Science 349, no. 6245 (2015): 255-260. [http://science.sciencemag.org/content/349/6245/255 Machine_learning_science_2015] | # Jordan, M. I., and T. M. Mitchell. "Machine learning: Trends, perspectives, and prospects." Science 349, no. 6245 (2015): 255-260. [http://science.sciencemag.org/content/349/6245/255 Machine_learning_science_2015] | ||
− | + | ==深度神经网络== | |
[[卷积神经网络]] | [[卷积神经网络]] | ||
第80行: | 第81行: | ||
# LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning." Nature 521(7553), pp:436-444, 2015. [http://www.nature.com/nature/journal/v521/n7553/full/nature14539.html Deep_Learning_Nature] | # LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning." Nature 521(7553), pp:436-444, 2015. [http://www.nature.com/nature/journal/v521/n7553/full/nature14539.html Deep_Learning_Nature] | ||
# Jeff Dean, Large-Scale Deep Learning for Intelligent Computer Systems, WSDM 2016. [http://research.google.com/pubs/jeff.html WSDM_keynote] | # Jeff Dean, Large-Scale Deep Learning for Intelligent Computer Systems, WSDM 2016. [http://research.google.com/pubs/jeff.html WSDM_keynote] | ||
− | # Jeffrey Dean et al. "Large scale distributed deep networks." | + | # Jeffrey Dean et al. "Large scale distributed deep networks." Advances in Neural Information Processing Systems. 2012. |
− | # TensorFlow: A System for Large-Scale Machine Learning, OSDI 2016.[https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf TensorFlow_OSDI2016_paper] [http://research.google.com/pubs/pub45381.html TensorFlow_paper] | + | # TensorFlow: A System for Large-Scale Machine Learning, OSDI 2016. [https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf TensorFlow_OSDI2016_paper] [http://research.google.com/pubs/pub45381.html TensorFlow_paper] |
− | + | ||
− | + | ==深度学习工具== | |
− | + | ===谷歌=== | |
[http://download.tensorflow.org/paper/whitepaper2015.pdf Google_TensorFlow_whitepaper] | [http://download.tensorflow.org/paper/whitepaper2015.pdf Google_TensorFlow_whitepaper] | ||
第92行: | 第92行: | ||
[https://github.com/tensorflow/tensorflow TensorFlow] | [https://github.com/tensorflow/tensorflow TensorFlow] | ||
− | + | ===百度=== | |
[https://github.com/dmlc/mxnet dmlc_mxnet] | [https://github.com/dmlc/mxnet dmlc_mxnet] | ||
− | + | ==智能问答== | |
[[实验室探究课-智能问答与智能系统]] | [[实验室探究课-智能问答与智能系统]] |
2016年11月7日 (一) 16:32的版本
目录
人工智能定义
人工智能,是指计算机系统具备从听说读写到搜索、推理、决策和回答问题等类人智能的能力
感知、理解、决策
人工智能历史
过去经历了2次高潮与2次低谷
网络和云计算所支持的计算能力
基于大数据的机器学习的算法进步
阅读材料:
- The rebirth of neural networks-ISCA-2010 rebirth_NN
国际研究
Facebook_AI-Research (Yann LeCun)
OpenAI (Ilya Sutskever)
四个层面
目标与功能分类
语音识别 机器视觉 智能问答
核心技术分类
特定算法 机器学习算法 深度神经网络
软件工具
TensorFlow / Caffe / Torch
底层硬件分类
可编程逻辑阵列 FPGA / 通用图形处理器 GPGPU / 通用处理器 CPU 群集
机器感知
语音识别
语音识别(Automatic Speech Recognition),简称ASR
- Google Speech Processing from Mobile to Farfield, CHiME 2016. Google_Speech_Processing
计算机视觉
计算机视觉(Computer Vision),简称 CV
自然语言理解
自然语言理解(Natural Language Processing),简称NLP
机器学习
Machine Learning
- Jordan, M. I., and T. M. Mitchell. "Machine learning: Trends, perspectives, and prospects." Science 349, no. 6245 (2015): 255-260. Machine_learning_science_2015
深度神经网络
Deep Neural Networks,简称DNN
Stanford Deep Learning tutorials DL_tutorials
入门导读
- LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning." Nature 521(7553), pp:436-444, 2015. Deep_Learning_Nature
- Jeff Dean, Large-Scale Deep Learning for Intelligent Computer Systems, WSDM 2016. WSDM_keynote
- Jeffrey Dean et al. "Large scale distributed deep networks." Advances in Neural Information Processing Systems. 2012.
- TensorFlow: A System for Large-Scale Machine Learning, OSDI 2016. TensorFlow_OSDI2016_paper TensorFlow_paper