“大数据智能”版本间的差异
来自iCenter Wiki
(以“ ===人工智能定义=== 人工智能,是指计算机系统具备从听说读写到搜索、推理、决策和回答问题等类人智能的能力 感知、理...”为内容创建页面) |
|||
第16行: | 第16行: | ||
阅读材料: | 阅读材料: | ||
#The rebirth of neural networks-ISCA-2010 | #The rebirth of neural networks-ISCA-2010 | ||
+ | |||
+ | ===国际研究=== | ||
+ | [https://www.openai.com/blog/ OpenAI] | ||
+ | |||
+ | [http://research.google.com/teams/brain/ Googel_Brain] | ||
+ | |||
+ | [https://research.facebook.com/ai Facebook_AI-Research] | ||
+ | |||
+ | ===三个层面=== | ||
+ | |||
+ | ====实现的目标与功能分类==== | ||
+ | |||
+ | 语音识别 机器视觉 智能问答 | ||
+ | |||
+ | ====核心技术分类==== | ||
+ | |||
+ | 特定算法 机器学习算法 深度神经网络 | ||
+ | |||
+ | ====底层实现方案==== | ||
+ | |||
+ | 可编程逻辑阵列 FPGA / 通用图形处理器 GPGPU / 通用处理器 CPU 群集 | ||
+ | |||
+ | ===机器学习=== | ||
+ | |||
+ | Machine Learning [http://scikit-learn.org scikit-learn] | ||
+ | |||
+ | # Jordan, M. I., and T. M. Mitchell. "Machine learning: Trends, perspectives, and prospects." Science 349, no. 6245 (2015): 255-260. [http://science.sciencemag.org/content/349/6245/255 Machine_learning_science_2015] | ||
+ | |||
+ | ====语音识别==== | ||
+ | |||
+ | Automatic Speech Recognition,简称ASR | ||
+ | |||
+ | ====计算机视觉==== | ||
+ | |||
+ | Computer Vision,简称 CV | ||
+ | |||
+ | ===深度神经网络=== | ||
+ | |||
+ | [[卷积神经网络]] | ||
+ | |||
+ | Deep Neural Networks,简称DNN | ||
+ | |||
+ | Stanford Deep Learning tutorials [http://ufldl.stanford.edu/wiki/index.php/UFLDL_Tutorial DL_tutorials] | ||
+ | |||
+ | 入门导读 | ||
+ | |||
+ | # LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning." Nature 521(7553), pp:436-444, 2015. [http://www.nature.com/nature/journal/v521/n7553/full/nature14539.html Deep_Learning_Nature] | ||
+ | # Jeff Dean, Large-Scale Deep Learning for Intelligent Computer Systems, WSDM 2016. [http://research.google.com/pubs/jeff.html WSDM_keynote] | ||
+ | # TensorFlow: A System for Large-Scale Machine Learning, OSDI 2016.[https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf TensorFlow_OSDI2016_paper] [http://research.google.com/pubs/pub45381.html TensorFlow_paper] | ||
+ | |||
+ | [http://research.google.com/pubs/jeff.html Jeff Dean] | ||
+ | |||
+ | [http://cs.stanford.edu/~quocle/ Quoc V. Le] | ||
===机器感知=== | ===机器感知=== |
2016年11月5日 (六) 03:23的版本
目录
人工智能定义
人工智能,是指计算机系统具备从听说读写到搜索、推理、决策和回答问题等类人智能的能力
感知、理解、决策
人工智能历史
过去经历了2次高潮与2次低谷
网络和云计算所支持的计算能力
基于大数据的机器学习的算法进步
阅读材料:
- The rebirth of neural networks-ISCA-2010
国际研究
三个层面
实现的目标与功能分类
语音识别 机器视觉 智能问答
核心技术分类
特定算法 机器学习算法 深度神经网络
底层实现方案
可编程逻辑阵列 FPGA / 通用图形处理器 GPGPU / 通用处理器 CPU 群集
机器学习
Machine Learning scikit-learn
- Jordan, M. I., and T. M. Mitchell. "Machine learning: Trends, perspectives, and prospects." Science 349, no. 6245 (2015): 255-260. Machine_learning_science_2015
语音识别
Automatic Speech Recognition,简称ASR
计算机视觉
Computer Vision,简称 CV
深度神经网络
Deep Neural Networks,简称DNN
Stanford Deep Learning tutorials DL_tutorials
入门导读
- LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning." Nature 521(7553), pp:436-444, 2015. Deep_Learning_Nature
- Jeff Dean, Large-Scale Deep Learning for Intelligent Computer Systems, WSDM 2016. WSDM_keynote
- TensorFlow: A System for Large-Scale Machine Learning, OSDI 2016.TensorFlow_OSDI2016_paper TensorFlow_paper
机器感知
语音识别 Google_ASR
计算机视觉
自然语言理解
深度神经网络
Deep Learning