“Student-Research-Training-THU”版本间的差异

来自iCenter Wiki
跳转至: 导航搜索
2017年学术活动
2017年学术活动
第4行: 第4行:
  
 
柳荫:  
 
柳荫:  
 
 
[x] Huang, Gao, Zhuang Liu, Kilian Q. Weinberger, and Laurens van der Maaten, Densely Connected Convolutional Networks, CVPR 2017.  
 
[x] Huang, Gao, Zhuang Liu, Kilian Q. Weinberger, and Laurens van der Maaten, Densely Connected Convolutional Networks, CVPR 2017.  
  
 
陈震:
 
陈震:
 
 
[x] Annett Ungethüm et al., Overview on Hardware Optimizations for Database Engines, BTW 2017.  
 
[x] Annett Ungethüm et al., Overview on Hardware Optimizations for Database Engines, BTW 2017.  
  
第14行: 第12行:
  
 
郑文勋:
 
郑文勋:
 
 
[x] Graves, A., Wayne, G. and Danihelka, I., 2014. Neural turing machines. arXiv preprint arXiv:1410.5401.
 
[x] Graves, A., Wayne, G. and Danihelka, I., 2014. Neural turing machines. arXiv preprint arXiv:1410.5401.
  
 
陈震:  
 
陈震:  
 
 
[x] Jouppi, N.P. et al., In-Datacenter Performance Analysis of a Tensor Processing Unit, ISCA 2017.
 
[x] Jouppi, N.P. et al., In-Datacenter Performance Analysis of a Tensor Processing Unit, ISCA 2017.
  
第24行: 第20行:
  
 
郑文勋:
 
郑文勋:
 
 
[x] Yu Su et al., In-Situ Bitmaps Generation and Efficient Data Analysis based on Bitmaps, HPDC 2015.
 
[x] Yu Su et al., In-Situ Bitmaps Generation and Efficient Data Analysis based on Bitmaps, HPDC 2015.
  
第30行: 第25行:
  
 
郑文勋:
 
郑文勋:
 
 
[x] Nguyen, Anh, Jason Yosinski, and Jeff Clune. "Deep neural networks are easily fooled: High confidence predictions for unrecognizable images." CVPR. 2015.
 
[x] Nguyen, Anh, Jason Yosinski, and Jeff Clune. "Deep neural networks are easily fooled: High confidence predictions for unrecognizable images." CVPR. 2015.
  

2017年10月7日 (六) 08:15的版本

2017年学术活动

  • 2017年10月7日

柳荫: [x] Huang, Gao, Zhuang Liu, Kilian Q. Weinberger, and Laurens van der Maaten, Densely Connected Convolutional Networks, CVPR 2017.

陈震: [x] Annett Ungethüm et al., Overview on Hardware Optimizations for Database Engines, BTW 2017.

  • 2017年9月30日

郑文勋: [x] Graves, A., Wayne, G. and Danihelka, I., 2014. Neural turing machines. arXiv preprint arXiv:1410.5401.

陈震: [x] Jouppi, N.P. et al., In-Datacenter Performance Analysis of a Tensor Processing Unit, ISCA 2017.

  • 2017年5月21日

郑文勋: [x] Yu Su et al., In-Situ Bitmaps Generation and Efficient Data Analysis based on Bitmaps, HPDC 2015.

  • 2017年4月8日

郑文勋: [x] Nguyen, Anh, Jason Yosinski, and Jeff Clune. "Deep neural networks are easily fooled: High confidence predictions for unrecognizable images." CVPR. 2015.

供选论文清单

TensorFlow系列

DistBelief - large deep networks, nips 2012.

TensorFlow: A system for large-scale machine learning, OSDI 2016.

TPU - In-Datacenter Performance Analysis of a Tensor Processing Unit, ISCA 2017.

CV系列

Densely Connected Convolutional Networks,CVPR 2017.

ASR语音识别

Multichannel Signal Processing with Deep Neural Networks for Automatic Speech Recognition-TASLP-2017


XXXX

[Quasi-Recurrent Neural Networks](https://arxiv.org/abs/1611.01576)

[Training RNNs as Fast as CNNs](https://arxiv.org/abs/1709.02755)

[Semi-Supervised Classification with Graph Convolutional Networks](https://arxiv.org/abs/1609.02907)

[A Survey on Transfer Learning](http://www3.ntu.edu.sg/home/sinnopan/publications/TLsurvey_0822.pdf)

[How transferable are features in deep neuralnetworks?](https://arxiv.org/abs/1411.1792)

[Progressive Neural Networks](https://arxiv.org/abs/1606.04671)

[One-Shot Learning of Object Categories](http://vision.stanford.edu/documents/Fei-FeiFergusPerona2006.pdf)

[One-shot Learning with Memory-Augmented Neural Networks](https://arxiv.org/abs/1605.06065)

[Auto-Encoding Variational Bayes](https://arxiv.org/abs/1312.6114)

[Autoencoding beyond pixels using a learned similarity metric](https://arxiv.org/abs/1512.09300)