更改

大数据系统-科研

删除17字节2017年5月16日 (二) 11:17
实验室研究。
==*研究定位==
数据分析层面:关联规则分析、对比集分析、协同过滤( Collaborative Learning)(系统级、功能)
处理器执行层面:BMI/SSE/AVX/AVX2/FMA (通用机器指令 Instructions)(专用机器指令、软硬件协同设计(HW/SW co-design)
==*本组工作==
**CODIS (Compressing Dirty Snippet) (C++ )
# Yinjun Wu et al., COMBAT: a new bitmap index coding algorithm for big data. TST 2016.
==*研究方向==
研究点:使用位图索引支撑的算法。
===#*MPSoC增强的索引运算===
#Sebastian Haas et al., An MPSoC for Energy-Efficient Database Query Processing, DAC 2016.
#Sebastian Haas et al., HW/SW-Database-CoDesign for Compressed Bitmap Index Processing, ASAP 2016.
===#*非循环图的可达性查询===
#Sebastiaan J. van Schaik et al., A Memory Efficient Reachability Data Structure Through Bit Vector Compression, SOGMOD 2011.
===#*对比集分析===
#Gangyi Zhu et al., SciCSM: Novel Contrast Set Mining over Scientific Datasets Using Bitmap Indices, SSDBM 2015.
===#* ISA增强的集运算===
#O. Arnold et al., An application-specific instruction set for accelerating set-oriented database primitives. SIGMOD 2014.
===#* 关联规则挖掘 ===
关联规则挖掘(association rule mining),查找频繁项目集(Frequent ItemSets)。其中最有名的算法是Apriori算法。
#Sung-Tan Kim et al., "BAR: bitmap-based association rule: an implementation and its optimizations." ACM MoMM 2009.
===#* 对比度设置学习===
对比度设置学习(对比集分析)是一种关联规则的学习 ,旨在找出有意义的不同的群体之间的差异,通过逆向工程的关键预测指标,确定每一个特定的组。
#Gangyi Zhu et al., SciCSM: Novel Contrast Set Mining over Scientific Datasets Using Bitmap Indices, SSDBM 2015.
===#*相关性挖掘===
* 相关性测度(Correlation Metrics )
#Yu Su et al., In-Situ Bitmaps Generation and Efficient Data Analysis based on Bitmaps, HPDC 2015.
===#* 子群发现 ===
子群发现(subgroup mining)是数据分析的一个重要方法。
# Yi Wang et al., SciSD: Novel Subgroup Discovery Over Scientific Datasets Using Bitmap Indices, #OSU-CISRC-3/15-TR03, March 2015.
===#* 有限状态机运行并行加速===
使用Intel Xeon Phi加速卡。
#Peng Jiang et al., Combining SIMD and Many Multi-core Parallelism for Finite State Machines with Enumerative Speculation,PPoPP 2017.
行政员管理员
6,105
个编辑