“大数据算法”版本间的差异

来自iCenter Wiki
跳转至: 导航搜索
第44行: 第44行:
  
 
关联规则挖掘(association rule mining),查找频繁项目集ItemSets。其中最有名的算法是Apriori算法。
 
关联规则挖掘(association rule mining),查找频繁项目集ItemSets。其中最有名的算法是Apriori算法。
 +
 +
==频繁项目集ItemSets==
  
 
基于位图的Apriori算法加速。
 
基于位图的Apriori算法加速。
 
#Kim, Sung-Tan, Jae-Myung Kim, and Sang-Won Lee. "BAR: bitmap-based association rule: an implementation and its optimizations." In Proceedings of the 7th International Conference on Advances in Mobile Computing and Multimedia, pp. 627-631. ACM, 2009.
 
#Kim, Sung-Tan, Jae-Myung Kim, and Sang-Won Lee. "BAR: bitmap-based association rule: an implementation and its optimizations." In Proceedings of the 7th International Conference on Advances in Mobile Computing and Multimedia, pp. 627-631. ACM, 2009.
  
 +
==对比度设置学习==
 +
 +
对比度设置学习(对比集分析)是一种关联规则的学习 ,旨在找出有意义的不同的群体之间的差异,通过逆向工程的关键预测指标,确定每一个特定的组。
 +
 +
++Gangyi Zhu et al., SciCSM: Novel Contrast Set Mining over Scientific Datasets Using Bitmap Indices, SSDBM 2015.
  
 
= 基数估计 =
 
= 基数估计 =

2017年5月15日 (一) 04:35的版本

数据分析

数据分析(Data Analytic),是指对数据集DataSet的属性值进行统计,以发现有用的信息。

常用的操作有集合SUM,TopN,Rank,Select操作。交互式分析一般要求实时响应。

集合(Set)

For a set of integers: S = {1, 2, 3, 1000}. Set operations:

tests: x ∈ S?

intersections: S1 ∩ S2

unions: S1 ∪ S2

differences: S1 ∖ S2

Jaccard Index (Tanimoto similarity) ∣S1 ∩ S2 ∣/∣S1 ∪ S2 ∣

有序集合(Ordered Set)

  • Iterate:

in sorted order,

in reverse order,

skippable iterators (jump to first value ≥ x)

  • Rank: how many elements of the set are smaller than k? (counting the number of ones up to a given position)
  • Select: find the kth smallest value (finding the position of the k-th bit set)
  • Min/max: find the maximal and minimal value

Broadword Implementation of Rank/Select Queries

研究论文:

  1. Vigna, Sebastiano. "Broadword implementation of rank/select queries." In International Workshop on Experimental and Efficient Algorithms, WEA 2008.


关联规则挖掘

关联规则挖掘(association rule mining),查找频繁项目集ItemSets。其中最有名的算法是Apriori算法。

频繁项目集ItemSets

基于位图的Apriori算法加速。

  1. Kim, Sung-Tan, Jae-Myung Kim, and Sang-Won Lee. "BAR: bitmap-based association rule: an implementation and its optimizations." In Proceedings of the 7th International Conference on Advances in Mobile Computing and Multimedia, pp. 627-631. ACM, 2009.

对比度设置学习

对比度设置学习(对比集分析)是一种关联规则的学习 ,旨在找出有意义的不同的群体之间的差异,通过逆向工程的关键预测指标,确定每一个特定的组。

++Gangyi Zhu et al., SciCSM: Novel Contrast Set Mining over Scientific Datasets Using Bitmap Indices, SSDBM 2015.

基数估计

基数估计(Cardinality Estimation),评估一个集合中不同数据项的个数的近似算法。比如,访问一个网站的独立IP个数。

  1. Flajolet, Philippe, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. "Hyperloglog: the analysis of a near-optimal cardinality estimation algorithm." DMTCS Proceedings 1 (2008).
  2. Heule, Stefan, Marc Nunkesser, and Alexander Hall. "HyperLogLog in practice: algorithmic engineering of a state of the art cardinality estimation algorithm." In Proceedings of the 16th International Conference on Extending Database Technology, pp. 683-692. ACM, 2013.