“智能硬件-课程阅读1”版本间的差异

来自iCenter Wiki
跳转至: 导航搜索
第2行: 第2行:
 
Google  
 
Google  
  
Convolutional, long short-term memory, fully connected deep neural networks, ICASSP 2015.
+
:Convolutional, long short-term memory, fully connected deep neural networks, ICASSP 2015.
  
Context dependent phone models for LSTM RNN acoustic modelling, ICASSP 2015.
+
:Context dependent phone models for LSTM RNN acoustic modelling, ICASSP 2015.
  
 
===Group2===
 
===Group2===
第10行: 第10行:
 
Google
 
Google
  
Listen, attend and spell: A neural network for large vocabulary conversational speech recognition, ICASSP 2015.
+
:Listen, attend and spell: A neural network for large vocabulary conversational speech recognition, ICASSP 2015.
  
 
===Group3===
 
===Group3===
 
JHU
 
JHU
  
Audio augmentation for speech recognition, InterSpeech 2015.
+
:Audio augmentation for speech recognition, InterSpeech 2015.
  
 
===Group4===
 
===Group4===
第21行: 第21行:
 
Baidu  
 
Baidu  
  
Deep Speech 2 End-to-End Speech Recognition in English and Mandarin, JMLR 2016.
+
:Deep Speech 2 End-to-End Speech Recognition in English and Mandarin, JMLR 2016.

2017年1月13日 (五) 10:28的版本

Group1

Google

Convolutional, long short-term memory, fully connected deep neural networks, ICASSP 2015.
Context dependent phone models for LSTM RNN acoustic modelling, ICASSP 2015.

Group2

Google

Listen, attend and spell: A neural network for large vocabulary conversational speech recognition, ICASSP 2015.

Group3

JHU

Audio augmentation for speech recognition, InterSpeech 2015.

Group4

Baidu

Deep Speech 2 End-to-End Speech Recognition in English and Mandarin, JMLR 2016.