“智能硬件-课程阅读1”版本间的差异

来自iCenter Wiki
跳转至: 导航搜索
 
(1位用户的2个中间修订版本未显示)
第1行: 第1行:
===Group1===
+
=== Group1 ===
  
Convolutional, long short-term memory, fully connected deep neural networks, ICASSP 2015.
+
Google
  
Context dependent phone models for LSTM RNN acoustic modelling, ICASSP 2015.
+
: Convolutional, long short-term memory, fully connected deep neural networks, ICASSP 2015.
  
===Group2===
+
: Context dependent phone models for LSTM RNN acoustic modelling, ICASSP 2015.
  
Listen, attend and spell: A neural network for large vocabulary conversational speech recognition, ICASSP 2015.
+
=== Group2 ===
  
===Group3===
+
Google
  
Audio augmentation for speech recognition, InterSpeech 2015.
+
: Listen, attend and spell: A neural network for large vocabulary conversational speech recognition, ICASSP 2015.
  
===Group4===
+
=== Group3 ===
  
Deep Speech 2 End-to-End Speech Recognition in English and Mandarin, JMLR 2016.
+
JHU
 +
 
 +
: Audio augmentation for speech recognition, InterSpeech 2015.
 +
 
 +
=== Group4 ===
 +
 
 +
Baidu
 +
 
 +
: Deep Speech 2 End-to-End Speech Recognition in English and Mandarin, JMLR 2016.

2017年1月24日 (二) 18:45的最后版本

Group1

Google

Convolutional, long short-term memory, fully connected deep neural networks, ICASSP 2015.
Context dependent phone models for LSTM RNN acoustic modelling, ICASSP 2015.

Group2

Google

Listen, attend and spell: A neural network for large vocabulary conversational speech recognition, ICASSP 2015.

Group3

JHU

Audio augmentation for speech recognition, InterSpeech 2015.

Group4

Baidu

Deep Speech 2 End-to-End Speech Recognition in English and Mandarin, JMLR 2016.