“智能硬件-课程阅读1”版本间的差异
来自iCenter Wiki
(1位用户的2个中间修订版本未显示) | |||
第1行: | 第1行: | ||
− | ===Group1=== | + | === Group1 === |
− | + | Google | |
− | + | : Convolutional, long short-term memory, fully connected deep neural networks, ICASSP 2015. | |
− | + | : Context dependent phone models for LSTM RNN acoustic modelling, ICASSP 2015. | |
− | + | === Group2 === | |
− | + | Google | |
− | + | : Listen, attend and spell: A neural network for large vocabulary conversational speech recognition, ICASSP 2015. | |
− | === | + | === Group3 === |
− | Deep Speech 2 End-to-End Speech Recognition in English and Mandarin, JMLR 2016. | + | JHU |
+ | |||
+ | : Audio augmentation for speech recognition, InterSpeech 2015. | ||
+ | |||
+ | === Group4 === | ||
+ | |||
+ | Baidu | ||
+ | |||
+ | : Deep Speech 2 End-to-End Speech Recognition in English and Mandarin, JMLR 2016. |
2017年1月24日 (二) 18:45的最后版本
Group1
- Convolutional, long short-term memory, fully connected deep neural networks, ICASSP 2015.
- Context dependent phone models for LSTM RNN acoustic modelling, ICASSP 2015.
Group2
- Listen, attend and spell: A neural network for large vocabulary conversational speech recognition, ICASSP 2015.
Group3
JHU
- Audio augmentation for speech recognition, InterSpeech 2015.
Group4
Baidu
- Deep Speech 2 End-to-End Speech Recognition in English and Mandarin, JMLR 2016.