“智能硬件-课程阅读2”版本间的差异

来自iCenter Wiki
跳转至: 导航搜索
(以“ Google Speech Processing from Mobile to Farfield CHiME 2016 # Parallel training of DNNs with natural gradient and parameter averaging, ICLR Workshop 2015. [http:/...”为内容创建页面)
 
 
(1位用户的4个中间修订版本未显示)
第1行: 第1行:
 +
Google
  
Google Speech Processing from Mobile to Farfield CHiME 2016
+
: Google Speech Processing from Mobile to Farfield, CHiME 2016.
  
# Parallel training of DNNs with natural gradient and parameter averaging, ICLR Workshop 2015. [http://www.danielpovey.com Dan Povey]
+
JHU
# Long short term memory-neural computation, Neural computation 9 (8), 1735-1780, 1997. [http://ieeexplore.ieee.org/document/6795963 LSTM]
+
 
# Karpagavalli, S., and E. Chandra. "A Review on Automatic Speech Recognition Architecture and Approaches." International Journal of Signal Processing, Image Processing and Pattern Recognition 9, no. 4 (2016): 393-404.
+
: Parallel training of DNNs with natural gradient and parameter averaging, ICLR Workshop 2015. [http://www.danielpovey.com Dan Povey]
# EESEN_ End-to-End Speech Recognition using Deep RNN Models and WFST-based Decoding, ASRU 2015.
+
 
# Learning the Speech Front-end With Raw Waveform CLDNNs, InterSpeech 2015.
+
CMU
 +
 
 +
: EESEN: End-to-End Speech Recognition using Deep RNN Models and WFST-based Decoding, ASRU 2015.
 +
 
 +
Google
 +
 
 +
: Learning the Speech Front-end With Raw Waveform CLDNNs, InterSpeech 2015.

2017年1月24日 (二) 18:48的最后版本

Google

Google Speech Processing from Mobile to Farfield, CHiME 2016.

JHU

Parallel training of DNNs with natural gradient and parameter averaging, ICLR Workshop 2015. Dan Povey

CMU

EESEN: End-to-End Speech Recognition using Deep RNN Models and WFST-based Decoding, ASRU 2015.

Google

Learning the Speech Front-end With Raw Waveform CLDNNs, InterSpeech 2015.