|
|
(1位用户的2个中间修订版本未显示) |
第1行: |
第1行: |
| | | |
− | ==='''基本定义'''===
| |
− |
| |
− | 海森堡不确定性原理(Heisenberg Uncertainty principle),是量子力学的一个基本原理,由德国物理学家海森堡(Werner Heisenberg)于1927年提出。本身为傅立叶变换导出的基本关系:若复函数f(x)与F(k)构成傅立叶变换对,且已由其幅度的平方归一化(即f*(x)f(x)相当于x的概率密度;F*(k)F(k)/2π相当于k的概率密度,*表示复共轭),则无论f(x)的形式如何,x与k标准差的乘积ΔxΔk不会小于某个常数(该常数的具体形式与f(x)的形式有关)。
| |
− |
| |
− | ==='''发展简史'''===
| |
− |
| |
− | ===='''旧量子论'''====
| |
− |
| |
− | 紧跟在汉斯·克拉默斯(Hans Kramers)的开拓工作之后,1925年6月,维尔纳·海森堡发表论文《运动与机械关系的量子理论重新诠释》(Quantum-Theoretical Re-interpretation of Kinematic and Mechanical Relations),创立了矩阵力学。旧量子论渐渐式微,现代量子力学正式开启。矩阵力学大胆地假设,关于运动的经典概念不适用于量子层级。在原子里的电子并不是运动于明确的轨道,而是模糊不清,无法观察到的轨域;其对于时间的傅里叶变换只涉及从量子跃迁中观察到的离散频率。
| |
− | 海森堡在论文里提出,只有在实验里能够观察到的物理量才具有物理意义,才可以用理论描述其物理行为,其它都是无稽之谈。因此,他避开任何涉及粒子运动轨道的详细计算,例如,粒子随着时间而改变的确切运动位置。因为,这运动轨道是无法直接观察到的。替代地,他专注于研究电子跃迁时,所发射的光的离散频率和强度。他计算出代表位置与动量的无限矩阵。这些矩阵能够正确地预测电子跃迁所发射出光波的强度。
| |
− | 同年6月,海森堡的上司马克斯·玻恩,在阅读了海森堡交给他发表的论文后,发觉了位置与动量无限矩阵有一个很显著的关系──它们不互相对易。
| |
− |
| |
− | ===='''小泽不等式及其验证'''====
| |
− | 随着科技进步,20世纪80年代以来,有声音开始指出该定律并不是万能的。日本名古屋大学教授小泽正直在2003年提出“小泽不等式”,认为“测不准原理”可能有其缺陷所在。为此,其科研团队对与构成原子的中子“自转”倾向相关的两个值进行了精密测量,并成功测出超过所谓“极限”的两个值的精度,使得小泽不等式获得成立,同时也证明了与“测不准原理”之间存在矛盾。
| |
− |
| |
− | ===='''弱测量技术'''====
| |
− | 多伦多大学(the University of Toronto)量子光学研究小组的李·罗泽马(Lee Rozema)设计了一种测量物理性质的仪器,其研究成果发表在2012年9月7日当周的《物理评论通讯》(Physical Review Letters)周刊上。
| |
− | 为了达到这个目标,需要在光子进入仪器前进行测量,但是这个过程也会造成干扰。为了解决这个问题,罗泽马及其同事使用一种弱测量技术(weak measurement),让所测对象受到的干扰微乎其微,每个光子进入仪器前,研究人员对其弱测量,然后再用仪器测量,之后对比两个结果。发现造成的干扰不像海森贝格原理中推断的那么大。
| |
− | 这一发现是对海森贝格理论的挑战。2010年,澳大利亚格里菲斯大学(Griffith University)科学家伦德(A.P. Lund)和怀斯曼(Howard Wiseman)发现弱测量可以应用于测量量子体系,然而还需要一个微型量子计算机,但这种计算机很难生产出来。罗泽马的实验包括应用弱测量和通过“簇态量子计算”技术简化量子计算过程,把这两者结合,找到了在实验室测试伦德和怀斯曼观点的方法。
| |
− |
| |
− | ===='''现代不等式'''====
| |
− |
| |
− | 1926年,海森堡任聘为哥本哈根大学尼尔斯·玻尔研究所的讲师,帮尼尔斯·玻尔做研究。在那里,海森堡表述出不确定性原理,从而为后来知名为哥本哈根诠释奠定了的坚固的基础。海森堡证明,对易关系可以推导出不确定性,或者,使用玻尔的术语,互补性:不能同时观测任意两个不对易的变量;更准确地知道其中一个变量,则必定更不准确地知道另外一个变量。
| |
− |
| |
− | ==='''理论背景'''===
| |
− |
| |
− | 海森伯在创立矩阵力学时,对形象化的图象采取否定态度。但他在表述中仍然需要使用“坐标”、“速度”之类的词汇,当然这些词汇已经不再等同于经典理论中的那些词汇。可是,究竟应该怎样理解这些词汇新的物理意义呢?海森伯抓住云室实验中观察电子径迹的问题进行思考。他试图用矩阵力学为电子径迹作出数学表述,可是没有成功。这使海森伯陷入困境。他反复考虑,意识到关键在于电子轨道的提法本身有问题。人们看到的径迹并不是电子的真正轨道,而是水滴串形成的雾迹,水滴远比电子大,所以人们也许只能观察到一系列电子的不确定的位置,而不是电子的准确轨道。因此,在量子力学中,一个电子只能以一定的不确定性处于某一位置,同时也只能以一定的不确定性具有某一速度。可以把这些不确定性限制在最小的范围内,但不能等于零。这就是海森伯对不确定性最初的思考。据海森伯晚年回忆,爱因斯坦1926年的一次谈话启发了他。爱因斯坦和海森伯讨论可不可以考虑电子轨道时,曾质问过海森伯:“难道说你是认真相信只有可观察量才应当进入物理理论吗?”对此海森伯答复说:“你处理相对论不正是这样的吗?你曾强调过绝对时间是不许可的,仅仅是因为绝对时间是不能被观察的。”爱因斯坦承认这一点,但是又说:“一个人把实际观察到的东西记在心里,会有启发性帮助的……在原则上试图单靠可观察量来建立理论,那是完全错误的。实际上恰恰相反,是理论决定我们能够观察到的东西……只有理论,即只有关于自然规律的知识,才能使我们从感觉印象推论出基本现象。”[6]
| |
− | 海森伯在1927年的论文一开头就说:“如果谁想要阐明‘一个物体的位置’(例如一个电子的位置)这个短语的意义,那么他就要描述一个能够测量‘电子位置’的实验,否则这个短语就根本没有意义。”海森伯在谈到诸如位置与动量,或能量与时间这样一些正则共轭量的不确定关系时,说:“这种不确定性正是量子力学中出现统计关系的根本原因。”
| |
− | 与玻尔的辩论
| |
− |
| |
− | 海森伯的测不准原理得到了玻尔的支持,但玻尔不同意他的推理方式,认为他建立测不准关系所用的基本概念有问题。双方发生过激烈的争论。玻尔的观点是测不准关系的基础在于波粒二象性,他说:“这才是问题的核心。”而海森伯说:“我们已经有了一个贯彻一致的数学推理方式,它把观察到的一切告诉了人们。在自然界中没有什么东西是这个数学推理方式不能描述的。”玻尔则说:“完备的物理解释应当绝对地高于数学形式体系。”
| |
− |
| |
− | ==='''参考资料'''===
| |
− |
| |
− | #[曾谨言.量子力学:科学出版社,2007]
| |
− | #[http://tech.ifeng.com/discovery/detail_2012_09/24/17844603_1.shtml 盘点现代物理学七大经典问题:薛定谔的猫]
| |
− | #[Vladimir B. Braginsky; Farid Ya Khalili. Quantum Measurement. Cambridge University Press. 25 May 1995]
| |
− | #[Caves, Carlton, Quantum-mechanical noise in an interferometer, Phys. Rev. D. 1981, 23: 1693–1708]
| |
− | #[W. Heisenberg, Über quantentheoretishe Umdeutung kinematisher und mechanischer Beziehungen, Zeitschrift für Physik, 33, 879-893, 1925 (received July 29, 1925). [English translation in: B. L. van der Waerden, editor, Sources of Quantum Mechanics (Dover Publications, 1968)]
| |