“大数据智能-参考文献”版本间的差异

来自iCenter Wiki
跳转至: 导航搜索
 
第1行: 第1行:
= 数据挖掘 =
+
'''课程参考书'''
 
+
* Leskovec, Jure, Anand Rajaraman, and Jeffrey David Ullman. Mining of massive datasets. Cambridge University Press, 2014. [http://www.mmds.org/ MMDS_book]
+
# Vijay Agneeswaran, Real-Time Applications with Storm, Spark, and More Hadoop Alternatives, 2014.
+
  
 
= 深度学习 =
 
= 深度学习 =
第13行: 第10行:
 
# 刘知远,崔安欣等,大数据智能:互联网时代的机器学习和自然语言处理技术. 电子工业出版社,2016年。
 
# 刘知远,崔安欣等,大数据智能:互联网时代的机器学习和自然语言处理技术. 电子工业出版社,2016年。
  
== 计算机围棋 ==
+
= 数据挖掘 =
  
# Mastering the game of Go with deep neural networks and tree search, nature 2015.
+
* Leskovec, Jure, Anand Rajaraman, and Jeffrey David Ullman. Mining of massive datasets. Cambridge University Press, 2014. [http://www.mmds.org/ MMDS_book]
# Better Computer Go Player with Neural Network and Long-term Prediction, ICLR 2016.
+
# Vijay Agneeswaran, Real-Time Applications with Storm, Spark, and More Hadoop Alternatives, 2014.
# Pachi: State of the art open source Go program, Advances in computer games, Springer Berlin Heidelberg, 2011.
+
# Training Deep Convolutional Neural Networks to Play Go, JMLR 2015.
+

2019年5月23日 (四) 09:43的最后版本

课程参考书

深度学习

  • Yoshua Bengio, Ian Goodfellow, Aaron Courville, Deep Learning, MIT Press, 2016. DeepLearningBook
  1. Google brain team, TensorFlow: Large-scale machine learning on heterogeneous systems, whitepaper, 2015.

大数据智能

  1. 刘知远,崔安欣等,大数据智能:互联网时代的机器学习和自然语言处理技术. 电子工业出版社,2016年。

数据挖掘

  • Leskovec, Jure, Anand Rajaraman, and Jeffrey David Ullman. Mining of massive datasets. Cambridge University Press, 2014. MMDS_book
  1. Vijay Agneeswaran, Real-Time Applications with Storm, Spark, and More Hadoop Alternatives, 2014.