“大数据智能-参考文献”版本间的差异

来自iCenter Wiki
跳转至: 导航搜索
(以“===基础=== # John L. Hennessy, and David A. Patterson. Computer architecture: a quantitative approach. Elsevier, 2011. # Neil Matthew, and Richard Stones. Beginni...”为内容创建页面)
 
 
(2位用户的14个中间修订版本未显示)
第1行: 第1行:
===基础===
+
'''课程参考书'''
  
# John L. Hennessy, and David A. Patterson. Computer architecture: a quantitative approach. Elsevier, 2011.
+
= 深度学习 =
# Neil Matthew, and Richard Stones. Beginning linux programming. John Wiley & Sons, 2011.
+
# Bjarne Stroustrup, The C++ programming language. Pearson Education, 2013.
+
# Weiss, Mark Allen, Data structures and algorithm analysis in Java, Addison-Wesley Longman Publishing Co., Inc., 1998.
+
# David Flanagan, JavaScript: The definitive guide: Activate your web pages. " O'Reilly Media, Inc.", 2011.
+
# Miguel Grinberg, Flask Web Development: Developing Web Applications with Python. O'Reilly Media, Inc., 2014.
+
  
===深度学习===
+
* Yoshua Bengio, Ian Goodfellow, Aaron Courville, Deep Learning, MIT Press, 2016. [http://www.deeplearningbook.org/ DeepLearningBook]
 
+
# Yoshua Bengio, Ian Goodfellow, Aaron Courville, Deep Learning, MIT Press, 2016. [http://www.deeplearningbook.org/ DeepLearningBook]
+
 
# Google brain team, TensorFlow: Large-scale machine learning on heterogeneous systems, whitepaper, 2015.
 
# Google brain team, TensorFlow: Large-scale machine learning on heterogeneous systems, whitepaper, 2015.
# Vijay Agneeswaran, Real-Time Applications with Storm, Spark, and More Hadoop Alternatives, 2014.
 
  
===计算机围棋===
+
= 大数据智能 =
  
# Mastering the game of Go with deep neural networks and tree search, nature 2015.
+
# 刘知远,崔安欣等,大数据智能:互联网时代的机器学习和自然语言处理技术. 电子工业出版社,2016年。
# Better Computer Go Player with Neural Network and Long-term Prediction, ICLR 2016.
+
 
# Pachi: State of the art open source Go program, Advances in computer games, Springer Berlin Heidelberg, 2011.
+
= 数据挖掘 =
# Training Deep Convolutional Neural Networks to Play Go, JMLR 2015.
+
 
 +
* Leskovec, Jure, Anand Rajaraman, and Jeffrey David Ullman. Mining of massive datasets. Cambridge University Press, 2014. [http://www.mmds.org/ MMDS_book]
 +
# Vijay Agneeswaran, Real-Time Applications with Storm, Spark, and More Hadoop Alternatives, 2014.

2019年5月23日 (四) 09:43的最后版本

课程参考书

深度学习

  • Yoshua Bengio, Ian Goodfellow, Aaron Courville, Deep Learning, MIT Press, 2016. DeepLearningBook
  1. Google brain team, TensorFlow: Large-scale machine learning on heterogeneous systems, whitepaper, 2015.

大数据智能

  1. 刘知远,崔安欣等,大数据智能:互联网时代的机器学习和自然语言处理技术. 电子工业出版社,2016年。

数据挖掘

  • Leskovec, Jure, Anand Rajaraman, and Jeffrey David Ullman. Mining of massive datasets. Cambridge University Press, 2014. MMDS_book
  1. Vijay Agneeswaran, Real-Time Applications with Storm, Spark, and More Hadoop Alternatives, 2014.