更改

安全帽检测系统

添加1,421字节2018年11月2日 (五) 03:00
/* 支撑技术 */
=实验时间=
校历第六~第七周(10月23日-11月05日)11月26日)
=学生安排=
==支撑技术==
 [https://opencv.org/ OpenCV ]  [http://www.tensorflow.org TensorFlow] https://tensorflow.google.cn/ Python+TensorFlow [[Python_TensorFlow_Basics]]
[https://github.com/tensorflow/models/tree/master/research/object_detection TensorFlow_Object_Detection]
 
=OpenCV图像获取=
 
以下为Windows 10平台为例。
 
==安装opencv==
 
安装Anaconda
 
在https://mirrors.tuna.tsinghua.edu.cn
 
下载安装 opencv
 
conda install -c conda-forge opencv
 
==python opencv==
 
使用摄像头捕获视频并显示
 
import cv2
import numpy
import matplotlib.pyplot as plot
 
imcap = cv2.VideoCapture(0)
 
while(1):
# get a frame
ret, frame = imcap.read()
# show a frame
cv2.imshow("capture", frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
 
imcap.release()
cv2.destroyAllWindows()
 
==硬件平台==
 
* PC平台
 
* PYNQ
 
* Android平板
 
* 英伟达TX1
=训练数据集=
参考文档
==训练==训练的步骤参考:[https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/running_locally.md Running Locally] 其中,使用自己的数据集需要生成labelmap和tfrecord:[https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/using_your_own_dataset.md label_mapOwn Dataset] pipeline的配置文件参考:[https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/configuring_jobs.md Pipeline]样例包括:[https://github.com/tensorflow/models/tree/master/research/object_detection/samples/configs config_samples] 可用的pretrain模型参考:[https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md Model Zoo建议使用速度为fast的模型。
=参考=
行政员管理员
6,105
个编辑