更改

机器学习

添加852字节2017年11月7日 (二) 08:42
/* AdaBoost */
=机器学习的目标与任务机器学习的定义 = 机器学习(Machine Learning),是指计算机从数据中自动分析获得规律,并利用规律对未知数据进行预测。因此,机器学习又称为统计学习(statistical learning)或统计机器学习(statistical machine learning)。 机器学习的一个简洁的定义:对于某类任务T(Task)和性能度量P(Performance),一个计算机程序被认为可以从经验E(Experience)中学习是指通过经验E改进后,它在任务T上由性能度量P衡量的性能有所提升。 =机器学习的目标=
问题:人类的天性比较懒散,而且重复的工作容易疲劳。
解决方法:发明算法,解决重复性的劳动。
= 机器学习的定义 机器学习的任务=
机器学习(Machine Learning),是指计算机从数据中自动分析获得规律,并利用规律对未知数据进行预测。因此,机器学习又称为统计学习(statistical learning)或统计机器学习(statistical machine learning)。*预测:通过数据集,预测新的数值 *分类:通过数据集,对新数值进行集合分类
机器学习的一个简洁的定义:对于某类任务T(Task)和性能度量P(Performance),一个计算机程序被认为可以从经验E(Experience)中学习是指通过经验E改进后,它在任务T上由性能度量P衡量的性能有所提升。
=机器学习的内容=
==感知机 ==
感知机是二类分类的线性分类模型,其输入为实例的特征向量,输出为实例的类别,取+1和-1二值。感知机学习旨在求出将训练数据进行线性划分的分离超平面,为此,导入基于误分类的损失函数,利用梯度下降法对损失函数进行极小化,求得感知机模型。它是神经网络与支持向量机的基础。
感知机是二类分类的线性分类模型,其输入为实例的特征向量,输出为实例的类别,取+1和-1二值。 感知机学习旨在求出将训练数据进行线性划分的分离超平面,为此,导入基于误分类的损失函数,利用梯度下降法对损失函数进行极小化,求得感知机模型。 它是神经网络与支持向量机的基础。 ==k近邻 == k近邻法(k-nearest neighbor, k-NN)是一种基本分类与回归方法。k近邻法假设给定一个训练数据集,其中的实例类别己定。分类时,对新的实例,根据其k个最近邻的训练实例的类别通过多数表决等方式进行预测。k近邻法实际上利用训练数据集对特征向量空间进行划分,并作为其分类的“模型”。k值的选择、距离度量及分类决策规则是k近邻法的三个基本要素。是一种基本分类与回归方法。 k近邻法假设给定一个训练数据集,其中的实例类别己定。 分类时,对新的实例,根据其k个最近邻的训练实例的类别通过多数表决等方式进行预测。 k近邻法实际上利用训练数据集对特征向量空间进行划分,并作为其分类的“模型”。 k值的选择、距离度量及分类决策规则是k近邻法的三个基本要素。
==决策树==
==逻辑斯提回归模型和最大熵 ==
逻辑回归(logistic regression)是统计学习中的经典分类方法。最大嫡是概率模型学习的一个准则将其推广到分类问题得到最大熵模型(maximum entropy model)。逻辑回归模型与最大熵模型都属于对数线性模型。 逻辑回归模型与最大熵模型都属于对数线性模型。
==支撑向量机==
支持向量机(support vector machines, SVM)是一种二类分类模型。它的基本模型是定义在特征空间上的间隔最大的线性分类器;支持向量机还包括核技巧,这使它成为实质上的非线性分类器。支持向量机的学习策略就是间隔最大化,可形式化为一个求解凸二次规划是一种二类分类模型。它的基本模型是定义在特征空间上的间隔最大的线性分类器;支持向量机还包括核技巧,这使它成为实质上的非线性分类器。 支持向量机的学习策略就是间隔最大化,可形式化为一个求解凸二次规划(convex quadratic programming)的问题,也等价于正则化的合页损失函数的最小化问。支持向量机的学习算法是求解凸二次规划的最优化算法。的问题,也等价于正则化的合页损失函数的最小化问。 支持向量机的学习算法是求解凸二次规划的最优化算法。
==AdaBoost==
 AdaBoost,是英文"Adaptive Boosting"(自适应增强)的缩写,由Yoav Freund和Robert Schapire在1995年提出。它的自适应在于:前一个基本分类器分错的样本会得到加强,加权后的全体样本再次被用来训练下一个基本分类器。同时,在每一轮中加入一个新的弱分类器,直到达到某个预定的足够小的错误率或达到预先指定的最大迭代次数。Schapire在1995年提出。 它的自适应在于:前一个基本分类器分错的样本会得到加强,加权后的全体样本再次被用来训练下一个基本分类器。同时,在每一轮中加入一个新的弱分类器,直到达到某个预定的足够小的错误率或达到预先指定的最大迭代次数。 
具体说来,整个Adaboost 迭代算法就3步:
 #初始化训练数据的权值分布。如果有N个样本,则每一个训练样本最开始时都被赋予相同的权值:1/N。#训练弱分类器。具体训练过程中,如果某个样本点已经被准确地分类,那么在构造下一个训练集中,它的权值就被降低;相反,如果某个样本点没有被准确地分类,那么它的权值就得到提高。然后,权值更新过的样本集被用于训练下一个分类器,整个训练过程如此迭代地进行下去。#将各个训练得到的弱分类器组合成强分类器。各个弱分类器的训练过程结束后,加大分类误差率小的弱分类器的权重,使其在最终的分类函数中起着较大的决定作用,而降低分类误差率大的弱分类器的权重,使其在最终的分类函数中起着较小的决定作用。换言之,误差率低的弱分类器在最终分类器中占的权重较大,否则较小。
==隐马尔可夫==
隐马尔可夫模型(hidden Markov model, HMM)是可用于标注问题的统计学习模型,描述由隐藏的马尔可夫链随机生成观测序列的过程,属于生成模型。
隐马尔可夫模型是关于时序的概率模型,描述由一个隐藏的马尔可夫链随机生成不可观测的状态随机序列,再由各个状态生成一个观测而产生观测随机序列的过程。隐藏的马尔可夫链随机生成的状态的序列,称为状态序列隐马尔可夫模型是关于时序的概率模型,描述由一个隐藏的马尔可夫链随机生成不可观测的状态随机序列,再由各个状态生成一个观测而产生观测随机序列的过程。 隐藏的马尔可夫链随机生成的状态的序列,称为状态序列(state sequence):每个状态生成一个观测,而由此产生的观测的随机序列,称为观测序列(observation sequenoe )。序列的每一个位置又可以看作是一个时刻。
==条件随机场==
 
条件随机场(conditional random field, CRF)是给定一组输入随机变量条件下另一组输出随机变量的条件概率分布模型,其特点是假设输出随机变量构成马尔可夫随机场。
 
条件随机场可以用于不同的预测问题,这里主要讲述线性链(linear chain)条件随机场在标注问题的应用,这时问题变成了由输入序列对输出序列预测的判别模型,形式为对数线性模型,其学习方法通常是极大似然估计或正则化的极大似然估计。
=机器学习的任务=
线性回归模型
 
*房价预测:机器学习==数学建模?
 
数据:以往房价数据
 
模型:(假设)线性模型y=a*x + b
 
算法:求出a, b (最小二乘法)
==分类==
行政员管理员
6,105
个编辑