=*研究方向=
#*MPSoC增强的索引运算
++O. Arnold et al., An application-specific instruction set for accelerating set-oriented database primitives. SIGMOD 2014.
= 关联规则挖掘 =
关联规则挖掘(association rule mining),查找频繁项目集ItemSets。其中最有名的算法是Apriori算法。
==频繁项目集(Frequent ItemSets)==
基于位图的Apriori算法加速。
#Sung-Tan Kim et al., "BAR: bitmap-based association rule: an implementation and its optimizations." ACM MoMM 2009.
==对比度设置学习==
对比度设置学习(对比集分析)是一种关联规则的学习 ,旨在找出有意义的不同的群体之间的差异,通过逆向工程的关键预测指标,确定每一个特定的组。
基于位图的对比集挖掘算法加速。
#Gangyi Zhu et al., SciCSM: Novel Contrast Set Mining over Scientific Datasets Using Bitmap Indices, SSDBM 2015.
=相关性挖掘=
==相关性测度(Correlation Metrics )==
地球移动距离(Earth Mover's Distance, EMD)
香农熵(Shannon's Entropy)
互信息(Mutual Information)
条件熵(Conditional Entropy)
==相关性挖掘(Correlation Mining)==
相关性分析位图索引加速。
#Yu Su et al., In-Situ Bitmaps Generation and Efficient Data Analysis based on Bitmaps, HPDC 2015.
= 子群发现(subgroup mining) =
基于位图索引的子群发现方法加速。
# Yi Wang et al., SciSD: Novel Subgroup Discovery Over Scientific Datasets Using Bitmap Indices, #OSU-CISRC-3/15-TR03, March 2015.
= 索引(搜索引擎) =