“增强学习-入门导读”版本间的差异
来自iCenter Wiki
第25行: | 第25行: | ||
# The grand challenge of computer Go Monte Carlo tree search and extensions, CACM 2012. | # The grand challenge of computer Go Monte Carlo tree search and extensions, CACM 2012. | ||
# '''Mastering the game of Go with deep neural networks and tree search, Nature 2016.''' | # '''Mastering the game of Go with deep neural networks and tree search, Nature 2016.''' | ||
+ | |||
+ | === 神经科学 === | ||
+ | |||
+ | [1] Gadagkar, V., Puzerey, P., Chen, R., Baird-daniel, E., Farhang, A., & Goldberg, J. (2016). Dopamine Neurons Encode Performance Error in Singing Birds. Science, 354(6317), 1278–1282. |
2017年2月25日 (六) 13:40的版本
教材
- Richard S. Sutton, Andrew Barto, An Introduction to Reinforcement Learning, MIT Press, 1998. Intro_RL
- Csaba Szepesvari, Algorithms for Reinforcement Learning, Synthesis lectures on artificial intelligence and machine learning 4, no. 1, pp.1-103, 2010. RLAlgsInMDPs
研究
AlphaGo 计算机围棋
- 蒙特卡洛树搜索(Monte-Carlo Tree Search)
- Bandit based monte-carlo planning, ECML 2006.
- Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search, CG 2006.
- Combining Online and Offline Knowledge in UCT, ICML 2007.
- Monte-Carlo tree search and rapid action value estimation in computer Go, Artificial Intelligence, Elsevier 2011.
- 神经网络
- Mimicking Go Experts with Convolutional Neural Networks, ICANN 2008.
- Training Deep Convolutional Neural Networks to Play Go, ICML 2015.
- 进展
- Achieving Master Level Play in 9 × 9 Computer Go, AAAI 2008.
- The grand challenge of computer Go Monte Carlo tree search and extensions, CACM 2012.
- Mastering the game of Go with deep neural networks and tree search, Nature 2016.
神经科学
[1] Gadagkar, V., Puzerey, P., Chen, R., Baird-daniel, E., Farhang, A., & Goldberg, J. (2016). Dopamine Neurons Encode Performance Error in Singing Birds. Science, 354(6317), 1278–1282.