“大数据智能-参考文献”版本间的差异

来自iCenter Wiki
跳转至: 导航搜索
基础
第1行: 第1行:
===基础===
+
=== 基础 ===
  
*编程语言
+
==== 编程语言 ====
  
 
# Google C++ Style [https://google.github.io/styleguide/cppguide.html Google C++ Style]
 
# Google C++ Style [https://google.github.io/styleguide/cppguide.html Google C++ Style]
第9行: 第9行:
 
# Bjarne Stroustrup, The C++ programming language. Pearson Education, 2013.
 
# Bjarne Stroustrup, The C++ programming language. Pearson Education, 2013.
  
 
+
==== 计算机应用基础 ====
*计算机应用基础
+
  
 
# John L. Hennessy, and David A. Patterson. Computer architecture: a quantitative approach. Elsevier, 2011.
 
# John L. Hennessy, and David A. Patterson. Computer architecture: a quantitative approach. Elsevier, 2011.
第16行: 第15行:
 
# Miguel Grinberg, Flask Web Development: Developing Web Applications with Python. O'Reilly Media, Inc., 2014.
 
# Miguel Grinberg, Flask Web Development: Developing Web Applications with Python. O'Reilly Media, Inc., 2014.
  
===数据管理===
+
=== 数据管理 ===
  
 
# Leskovec, Jure, Anand Rajaraman, and Jeffrey David Ullman. Mining of massive datasets. Cambridge University Press, 2014. [http://www.mmds.org/ MMDS_book]
 
# Leskovec, Jure, Anand Rajaraman, and Jeffrey David Ullman. Mining of massive datasets. Cambridge University Press, 2014. [http://www.mmds.org/ MMDS_book]
 
 
# Vijay Agneeswaran, Real-Time Applications with Storm, Spark, and More Hadoop Alternatives, 2014.
 
# Vijay Agneeswaran, Real-Time Applications with Storm, Spark, and More Hadoop Alternatives, 2014.
  
===大数据智能===
+
=== 大数据智能 ===
 +
 
 
# 刘知远,崔安欣等,大数据智能:互联网时代的机器学习和自然语言处理技术. 电子工业出版社,2016年。
 
# 刘知远,崔安欣等,大数据智能:互联网时代的机器学习和自然语言处理技术. 电子工业出版社,2016年。
  
 
+
=== 深度学习 ===
===深度学习===
+
  
 
# Yoshua Bengio, Ian Goodfellow, Aaron Courville, Deep Learning, MIT Press, 2016. [http://www.deeplearningbook.org/ DeepLearningBook]
 
# Yoshua Bengio, Ian Goodfellow, Aaron Courville, Deep Learning, MIT Press, 2016. [http://www.deeplearningbook.org/ DeepLearningBook]
 
# Google brain team, TensorFlow: Large-scale machine learning on heterogeneous systems, whitepaper, 2015.
 
# Google brain team, TensorFlow: Large-scale machine learning on heterogeneous systems, whitepaper, 2015.
  
===计算机围棋===
+
=== 计算机围棋 ===
  
 
# Mastering the game of Go with deep neural networks and tree search, nature 2015.
 
# Mastering the game of Go with deep neural networks and tree search, nature 2015.

2017年1月25日 (三) 14:53的版本

基础

编程语言

  1. Google C++ Style Google C++ Style
  2. PEP 8 - Style Guide for Python Code PEP_8
  3. David Flanagan, JavaScript: The definitive guide: Activate your web pages. " O'Reilly Media, Inc.", 2011.
  4. Weiss, Mark Allen, Data structures and algorithm analysis in Java, Addison-Wesley Longman Publishing Co., Inc., 1998.
  5. Bjarne Stroustrup, The C++ programming language. Pearson Education, 2013.

计算机应用基础

  1. John L. Hennessy, and David A. Patterson. Computer architecture: a quantitative approach. Elsevier, 2011.
  2. Neil Matthew, and Richard Stones. Beginning linux programming. John Wiley & Sons, 2011.
  3. Miguel Grinberg, Flask Web Development: Developing Web Applications with Python. O'Reilly Media, Inc., 2014.

数据管理

  1. Leskovec, Jure, Anand Rajaraman, and Jeffrey David Ullman. Mining of massive datasets. Cambridge University Press, 2014. MMDS_book
  2. Vijay Agneeswaran, Real-Time Applications with Storm, Spark, and More Hadoop Alternatives, 2014.

大数据智能

  1. 刘知远,崔安欣等,大数据智能:互联网时代的机器学习和自然语言处理技术. 电子工业出版社,2016年。

深度学习

  1. Yoshua Bengio, Ian Goodfellow, Aaron Courville, Deep Learning, MIT Press, 2016. DeepLearningBook
  2. Google brain team, TensorFlow: Large-scale machine learning on heterogeneous systems, whitepaper, 2015.

计算机围棋

  1. Mastering the game of Go with deep neural networks and tree search, nature 2015.
  2. Better Computer Go Player with Neural Network and Long-term Prediction, ICLR 2016.
  3. Pachi: State of the art open source Go program, Advances in computer games, Springer Berlin Heidelberg, 2011.
  4. Training Deep Convolutional Neural Networks to Play Go, JMLR 2015.