“大数据智能-参考文献”版本间的差异
来自iCenter Wiki
(→基础) |
|||
第1行: | 第1行: | ||
− | ===基础=== | + | === 基础 === |
− | + | ==== 编程语言 ==== | |
# Google C++ Style [https://google.github.io/styleguide/cppguide.html Google C++ Style] | # Google C++ Style [https://google.github.io/styleguide/cppguide.html Google C++ Style] | ||
第9行: | 第9行: | ||
# Bjarne Stroustrup, The C++ programming language. Pearson Education, 2013. | # Bjarne Stroustrup, The C++ programming language. Pearson Education, 2013. | ||
− | + | ==== 计算机应用基础 ==== | |
− | + | ||
# John L. Hennessy, and David A. Patterson. Computer architecture: a quantitative approach. Elsevier, 2011. | # John L. Hennessy, and David A. Patterson. Computer architecture: a quantitative approach. Elsevier, 2011. | ||
第16行: | 第15行: | ||
# Miguel Grinberg, Flask Web Development: Developing Web Applications with Python. O'Reilly Media, Inc., 2014. | # Miguel Grinberg, Flask Web Development: Developing Web Applications with Python. O'Reilly Media, Inc., 2014. | ||
− | ===数据管理=== | + | === 数据管理 === |
# Leskovec, Jure, Anand Rajaraman, and Jeffrey David Ullman. Mining of massive datasets. Cambridge University Press, 2014. [http://www.mmds.org/ MMDS_book] | # Leskovec, Jure, Anand Rajaraman, and Jeffrey David Ullman. Mining of massive datasets. Cambridge University Press, 2014. [http://www.mmds.org/ MMDS_book] | ||
− | |||
# Vijay Agneeswaran, Real-Time Applications with Storm, Spark, and More Hadoop Alternatives, 2014. | # Vijay Agneeswaran, Real-Time Applications with Storm, Spark, and More Hadoop Alternatives, 2014. | ||
− | ===大数据智能=== | + | === 大数据智能 === |
+ | |||
# 刘知远,崔安欣等,大数据智能:互联网时代的机器学习和自然语言处理技术. 电子工业出版社,2016年。 | # 刘知远,崔安欣等,大数据智能:互联网时代的机器学习和自然语言处理技术. 电子工业出版社,2016年。 | ||
− | + | === 深度学习 === | |
− | ===深度学习=== | + | |
# Yoshua Bengio, Ian Goodfellow, Aaron Courville, Deep Learning, MIT Press, 2016. [http://www.deeplearningbook.org/ DeepLearningBook] | # Yoshua Bengio, Ian Goodfellow, Aaron Courville, Deep Learning, MIT Press, 2016. [http://www.deeplearningbook.org/ DeepLearningBook] | ||
# Google brain team, TensorFlow: Large-scale machine learning on heterogeneous systems, whitepaper, 2015. | # Google brain team, TensorFlow: Large-scale machine learning on heterogeneous systems, whitepaper, 2015. | ||
− | ===计算机围棋=== | + | === 计算机围棋 === |
# Mastering the game of Go with deep neural networks and tree search, nature 2015. | # Mastering the game of Go with deep neural networks and tree search, nature 2015. |
2017年1月25日 (三) 14:53的版本
基础
编程语言
- Google C++ Style Google C++ Style
- PEP 8 - Style Guide for Python Code PEP_8
- David Flanagan, JavaScript: The definitive guide: Activate your web pages. " O'Reilly Media, Inc.", 2011.
- Weiss, Mark Allen, Data structures and algorithm analysis in Java, Addison-Wesley Longman Publishing Co., Inc., 1998.
- Bjarne Stroustrup, The C++ programming language. Pearson Education, 2013.
计算机应用基础
- John L. Hennessy, and David A. Patterson. Computer architecture: a quantitative approach. Elsevier, 2011.
- Neil Matthew, and Richard Stones. Beginning linux programming. John Wiley & Sons, 2011.
- Miguel Grinberg, Flask Web Development: Developing Web Applications with Python. O'Reilly Media, Inc., 2014.
数据管理
- Leskovec, Jure, Anand Rajaraman, and Jeffrey David Ullman. Mining of massive datasets. Cambridge University Press, 2014. MMDS_book
- Vijay Agneeswaran, Real-Time Applications with Storm, Spark, and More Hadoop Alternatives, 2014.
大数据智能
- 刘知远,崔安欣等,大数据智能:互联网时代的机器学习和自然语言处理技术. 电子工业出版社,2016年。
深度学习
- Yoshua Bengio, Ian Goodfellow, Aaron Courville, Deep Learning, MIT Press, 2016. DeepLearningBook
- Google brain team, TensorFlow: Large-scale machine learning on heterogeneous systems, whitepaper, 2015.
计算机围棋
- Mastering the game of Go with deep neural networks and tree search, nature 2015.
- Better Computer Go Player with Neural Network and Long-term Prediction, ICLR 2016.
- Pachi: State of the art open source Go program, Advances in computer games, Springer Berlin Heidelberg, 2011.
- Training Deep Convolutional Neural Networks to Play Go, JMLR 2015.