“智能硬件-课程阅读2”版本间的差异

来自iCenter Wiki
跳转至: 导航搜索
(以“ Google Speech Processing from Mobile to Farfield CHiME 2016 # Parallel training of DNNs with natural gradient and parameter averaging, ICLR Workshop 2015. [http:/...”为内容创建页面)
 
第3行: 第3行:
  
 
# Parallel training of DNNs with natural gradient and parameter averaging, ICLR Workshop 2015. [http://www.danielpovey.com Dan Povey]
 
# Parallel training of DNNs with natural gradient and parameter averaging, ICLR Workshop 2015. [http://www.danielpovey.com Dan Povey]
# Long short term memory-neural computation, Neural computation 9 (8), 1735-1780, 1997. [http://ieeexplore.ieee.org/document/6795963 LSTM]
 
 
# Karpagavalli, S., and E. Chandra. "A Review on Automatic Speech Recognition Architecture and Approaches." International Journal of Signal Processing, Image Processing and Pattern Recognition 9, no. 4 (2016): 393-404.
 
# Karpagavalli, S., and E. Chandra. "A Review on Automatic Speech Recognition Architecture and Approaches." International Journal of Signal Processing, Image Processing and Pattern Recognition 9, no. 4 (2016): 393-404.
 
# EESEN_ End-to-End Speech Recognition using Deep RNN Models and WFST-based Decoding, ASRU 2015.
 
# EESEN_ End-to-End Speech Recognition using Deep RNN Models and WFST-based Decoding, ASRU 2015.
 
# Learning the Speech Front-end With Raw Waveform CLDNNs, InterSpeech 2015.
 
# Learning the Speech Front-end With Raw Waveform CLDNNs, InterSpeech 2015.

2016年11月22日 (二) 04:39的版本

Google Speech Processing from Mobile to Farfield CHiME 2016

  1. Parallel training of DNNs with natural gradient and parameter averaging, ICLR Workshop 2015. Dan Povey
  2. Karpagavalli, S., and E. Chandra. "A Review on Automatic Speech Recognition Architecture and Approaches." International Journal of Signal Processing, Image Processing and Pattern Recognition 9, no. 4 (2016): 393-404.
  3. EESEN_ End-to-End Speech Recognition using Deep RNN Models and WFST-based Decoding, ASRU 2015.
  4. Learning the Speech Front-end With Raw Waveform CLDNNs, InterSpeech 2015.