“大数据智能”版本间的差异

来自iCenter Wiki
跳转至: 导航搜索
深度学习工具
深度学习工具
第96行: 第96行:
 
[http://cntk.ai CNTK_Microsfot]
 
[http://cntk.ai CNTK_Microsfot]
 
[https://www.microsoft.com/en-us/research/product/cognitive-toolkit/tutorials/ CNTK]
 
[https://www.microsoft.com/en-us/research/product/cognitive-toolkit/tutorials/ CNTK]
 
  
 
===百度===
 
===百度===

2016年11月21日 (一) 07:56的版本

人工智能定义

人工智能,是指计算机系统具备从听说读写到搜索、推理、决策和回答问题等类人智能的能力

感知、理解、决策

人工智能历史

过去经历了2次高潮与2次低谷

网络和云计算所支持的计算能力

基于大数据的机器学习的算法进步

阅读材料:

  1. The rebirth of neural networks-ISCA-2010 rebirth_NN

国际研究

Googel_Brain (Jeff Dean)

Facebook_AI-Research (Yann LeCun)

OpenAI (Ilya Sutskever)

四个层面

目标与功能分类

语音识别 机器视觉 智能问答

核心技术分类

特定算法 机器学习算法 深度神经网络

软件工具

TensorFlow / Caffe / Torch

底层硬件分类

可编程逻辑阵列 FPGA / 通用图形处理器 GPGPU / 通用处理器 CPU 群集

机器感知

语音识别

语音识别(Automatic Speech Recognition),简称ASR

  1. Google Speech Processing from Mobile to Farfield, CHiME 2016. Google_Speech_Processing

计算机视觉

计算机视觉(Computer Vision),简称 CV

自然语言理解

自然语言理解(Natural Language Processing),简称NLP

机器学习

Machine Learning

scikit-learn

  1. Jordan, M. I., and T. M. Mitchell. "Machine learning: Trends, perspectives, and prospects." Science 349, no. 6245 (2015): 255-260. Machine_learning_science_2015

深度神经网络

卷积神经网络

Deep Neural Networks,简称DNN

Stanford Deep Learning tutorials DL_tutorials

入门导读

  1. LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning." Nature 521(7553), pp:436-444, 2015. Deep_Learning_Nature
  2. Jeff Dean, Large-Scale Deep Learning for Intelligent Computer Systems, WSDM 2016. WSDM_keynote
  3. Jeffrey Dean et al. "Large scale distributed deep networks." Advances in Neural Information Processing Systems. 2012.
  4. TensorFlow: A System for Large-Scale Machine Learning, OSDI 2016. TensorFlow_OSDI2016_paper TensorFlow_paper

深度学习工具

谷歌

Google_TensorFlow_whitepaper

TensorFlow

微软

CNTK_Microsfot CNTK

百度

dmlc_mxnet

智能问答

实验室探究课-智能问答与智能系统