“大数据智能-参考文献”版本间的差异

来自iCenter Wiki
跳转至: 导航搜索
(以“===基础=== # John L. Hennessy, and David A. Patterson. Computer architecture: a quantitative approach. Elsevier, 2011. # Neil Matthew, and Richard Stones. Beginni...”为内容创建页面)
 
第7行: 第7行:
 
# David Flanagan, JavaScript: The definitive guide: Activate your web pages. " O'Reilly Media, Inc.", 2011.
 
# David Flanagan, JavaScript: The definitive guide: Activate your web pages. " O'Reilly Media, Inc.", 2011.
 
# Miguel Grinberg, Flask Web Development: Developing Web Applications with Python. O'Reilly Media, Inc., 2014.
 
# Miguel Grinberg, Flask Web Development: Developing Web Applications with Python. O'Reilly Media, Inc., 2014.
 +
 +
===数据管理===
 +
 +
# Leskovec, Jure, Anand Rajaraman, and Jeffrey David Ullman. Mining of massive datasets. Cambridge University Press, 2014.
  
 
===深度学习===
 
===深度学习===

2016年11月12日 (六) 09:12的版本

基础

  1. John L. Hennessy, and David A. Patterson. Computer architecture: a quantitative approach. Elsevier, 2011.
  2. Neil Matthew, and Richard Stones. Beginning linux programming. John Wiley & Sons, 2011.
  3. Bjarne Stroustrup, The C++ programming language. Pearson Education, 2013.
  4. Weiss, Mark Allen, Data structures and algorithm analysis in Java, Addison-Wesley Longman Publishing Co., Inc., 1998.
  5. David Flanagan, JavaScript: The definitive guide: Activate your web pages. " O'Reilly Media, Inc.", 2011.
  6. Miguel Grinberg, Flask Web Development: Developing Web Applications with Python. O'Reilly Media, Inc., 2014.

数据管理

  1. Leskovec, Jure, Anand Rajaraman, and Jeffrey David Ullman. Mining of massive datasets. Cambridge University Press, 2014.

深度学习

  1. Yoshua Bengio, Ian Goodfellow, Aaron Courville, Deep Learning, MIT Press, 2016. DeepLearningBook
  2. Google brain team, TensorFlow: Large-scale machine learning on heterogeneous systems, whitepaper, 2015.
  3. Vijay Agneeswaran, Real-Time Applications with Storm, Spark, and More Hadoop Alternatives, 2014.

计算机围棋

  1. Mastering the game of Go with deep neural networks and tree search, nature 2015.
  2. Better Computer Go Player with Neural Network and Long-term Prediction, ICLR 2016.
  3. Pachi: State of the art open source Go program, Advances in computer games, Springer Berlin Heidelberg, 2011.
  4. Training Deep Convolutional Neural Networks to Play Go, JMLR 2015.