更改

数学之美:当代最伟大数学家回顾过去百年的数学

添加172字节2016年4月6日 (三) 01:07
7个版本:all
译文来自 [[算法与数学之美]] 微信号: MathAndAlgorithm 发布时间:2015 12月 25日 [https://mp.weixin.qq.com/s?__biz=MzA5ODUxOTA5Mg==&mid=401967414&idx=1&sn=fbafa8c477b98753cef2083333c8c272&scene=1&srcid=1226fu1lko3d5eeI6wqOUDz3&key=62bb001fdbc364e57bf9690a914b09c9cb4b7d1c05a7853cc70b320c708c0cfaafe9cb20b46785228763fb569544a357&ascene=0&uin=Mjg1MTE2NjY0MQ%3D%3D&devicetype=iMac+MacBookPro10%2C1+OSX+OSX+10.11.2+build(15C50)&version=11020201&pass_ticket=G9KDngCTFdlYSFUEO7qYtGCCSqvATEnomuqWInndO6Sfxd%2FqI9DrtCX7QizHG%2B2I 2015 12月 25日 数学之美:当代最伟大数学家回顾过去百年的数学]
作者:Michael Atiyah爵士作者:[https://en.wikipedia.org/wiki/Michael_Atiyah Michael Atiyah]爵士/英国数学家,被誉为当今最伟大的数学家之一 译者:白承铭 =正文=
谢谢邀请我来这里参加这个活动。当然,如果有人想谈论一个世纪的终结以及下一个世纪的开始,那么他有两个具有相当难度的选择:一个是回顾过去百年的数学;另一个是对未来百年数学发展的预测,我选择了前面这个比较困难的任务,任何人都可以预测未来而且我们并不能判定是对还是错。然而对过去的任何评述,每个人都可以提出异议。
==从局部到整体==
作为开始,我准备列一些主题并且围绕它们来讨论。我谈论的第一个主题概括地讲,就是被大家称为从局部到整体的转变。在古典时期,人们大体上已经研究了在小范围内,使用局部坐标等等来研究事物。在这个世纪,重点已经转移到试图了解事物整体和大范围的性质。由于整体性质更加难以研究,所以大多只能有定性的结果,这时拓扑的思想就变得非常重要了。正是Poincare,他不仅为拓扑学发展作出先驱性的贡献,而且也预言拓扑学将成为二十世纪数学的一个重要的组成部分,顺便让我提一下,给出一系列著名问题的Hilbert并没有意识到这一点。拓扑学很难在他的那些问题中找到具体体现,但是对Poincare而言,他相当清楚地看出拓扑学将成为一个重要的内容。
当然这种情况也发生在物理学中,经典物理涉及局部理论,这时我们写下可以完全描述小范围性质的微分方程,接下来我们就必须研究一个物理系统的大范围性质。物理学涉及的全部内容就是当我们从小范围出发时,我们可以知道在大范围内正在发生什么,可以预计将要发生什么,并且沿着这些结论前进。
==维数的增加==
我的第二个主题有些不同,我称之为维数的增加。我们再次从经典的复变函数理论开始:经典复变函数论主要是详细讨论一个复变量理论并加以精炼。推广到两个或者更多个变量基本上发生在本世纪,并且是发生在有新现象出现的领域内。不是所有的现象都与一个变量的情形相同,这里有完全新的特性出现,并且n个变量的理论的研究越来越占有统治地位,这也是本世纪主要成就之一。
线性代数总是涉及多个变量,但它的维数的增加更具有戏剧性,它的增加是从有限维到无穷维,从线性空间到有无穷个变量的Hilbert空间。当然这就涉及到了分析,在多个变量的函数之后,我们就有函数的函数,即泛函。它们是函数空间上的函数。它们本质上有无穷多个变量,这就是我们称为变分学的理论。一个类似的事情发生在一般(非线性)函数理论的发展中。这是一个古老的课题,但真正取得卓越的成果是在二十世纪。这就是我谈的第二个主题。
==从交换到非交换==
第三个主题是从交换到非交换的转变。这可能是二十世纪数学,特别是代数学的最主要的特征之一。代数的非交换方面已经极其重要,当然,它源自于十九世纪。它有几个不同的起源。Hamilton在四元数方面的工作可能是最令人惊叹的,并且有巨大的影响,实际上这是受处理物理问题时所采用的思想所启发。还有Grassmann在外代数方面的工作,这是另一个代数体系,现在已经被融入我们的微分形式理论中。当然,还有Cayley以线性代数为基础的矩阵方面的工作和Galois在群论方面的工作等。
所有这些都是以不同的方式形成了把非交换乘法引入代数理论的基石,我形象地把它们说成是二十世纪代数机器赖以生存的“面包和黄油”。我们现在可以不去思考这些,但在十九世纪,以上所有例子都以各自不同的方式取得了重大的突破,当然,这些思想在不同的领域内得到了惊人的发展。矩阵和非交换乘法在物理中的应用产生了量子理论。Heisenberg对易关系是非交换代数在物理中的一个最重要的应用例子,以至后来被von Neumann推广到他的算子代数理论中。
==从线性到非线性 ==
我的下一个主题是从线性到非线性的转变。古典数学的大部分或者基本上是线性的,或者即使不是很精确的线性,也是那种可以通过某些扰动展开来研究的近似线性,真正的非线性现象的处理是非常困难的,并且只是在本世纪,才在很大的范围内对其进行了真正的研究。
当然,在物理学,Maxwell方程(电磁学的基本方程)是线性偏微分方程。与之对应的是著名的Yang-Mills方程,它们是非线性方程并被假定用来调控与物质结构有关的力。这些方程之所以是非线性的,是因为Yang-Mills方程本质上是Maxwell方程的矩阵体现,并且由矩阵不可交换这一事实导致方程中出现非线性项。于是在这里我们看到了一个非线性性与非交换性之间的有趣的联系。非交换性产生一类特殊的非线性性,这的确是很有意思和很重要的。
==几何与代数==
至此我谈的是一些一般性的主题,现在我想谈论一下数学中的一个二分叉现象,它来回摇摆却始终伴随着我们,这就给了我一个机会来做一些哲学上的思索和说明。我指的是几何和代数之间的二分法,几何和代数是数学的两个形式支柱,并且都有悠久的历史。几何学可以追溯到古希腊甚至更早的时期;代数学则源于古阿拉伯人和古印度人。所以,它们都已经成为数学的基础,但它们之间有一种令人感到不太自然的关系。
几何和代数的这种选择导致能融合二者的一些交叉课题的产生,并且代数和几何之间的区别也不象我讲的那样直截了当和朴实无华。例如,代数学家们经常使用图式(diagram)。而除了几何直觉,图式又能是什么呢?
==通用的技术==
现在我不想再谈论太多就内容来划分的主题,而想谈谈那些依照已经使用的技术和常见方法所确定的主题,也就是我想描述一些已经广泛应用于众多领域的常见方法。第一个就是: 同调论 。
这表明同调论在代数的其它分支也有着广泛的应用。我们可以引入同调群的概念,它通常是与非线性事物相关的线性事物。我们可以将之应用于群论,例如,有限群,以及李代数:它们都有相应的同调群。在数论方面,同调群通过Galois群产生了非常重要的应用。因此在相当广泛的情形下同调论都是强有力的工具之一,它也是二十世纪数学的一个典型的特征。
==K-理论==
我要谈的另外一个技术就是所谓的“K-理论”。它在很多方面都与同调论相似,它的历史并不很长(直到二十世纪中叶才出现,尽管其起源的某些方面也许可以追溯到更早一些),但它却有着很广泛的应用,已经渗透进了数学的许多部分。K-理论实际上与表示理论紧密相联,有限群的表示理论,可以讲,起源于十九世纪,但是其现代形式——K-理论却只有一个相对较短的历史。K-理论可以用下面的方式来理解:它可以被想成是应用矩阵论的一种尝试。我们知道矩阵的乘法是不可交换的,于是我们想构造矩阵可换的或是线性的不变量。迹维数和行列式都是矩阵论中可换的不变量,而K-理论即是试图处理它们的一种系统的方法,它有时也被称为“稳定线性代数”。其思想就是,如果我们有很多矩阵,那么把两个不可换的矩阵A和矩阵B放在不同块的正交位置上,它们就可换了,因为在一个大的空间里,我们可以随意移动物体。于是在某些近似情况下,这样做是很有好处的,足以让我们得到一些信息,这就是作为一个技术的K-理论的基石。这完全类似于同调论,二者都是从复杂的非线性情形获取线性的信息。
非常有趣的是,也就是在最近,Witten通过他在弦理论方面(基础物理学的最新思想)的工作发现许多很有趣的方法都与K-理论有关,并且K-理论看起来为那些所谓的“守恒量”提供了一个很自然的“家”。虽然在过去同调论被认为是这些理论的自然框架,但是现在看起来K一理论能提供更好的答案。
==李群==
另一个不单单是一项技术、而且是具有统一性的概念是李群。现在说起李群,我们基本上就是指正交群,酉群,辛群以及一些例外群,它们在二十世纪数学历史中起了非常重要的作用。它们同样起源于十九世纪,SophusLie是一位十九世纪的挪威数学家。正如很多人所讲的那样,他和Fleix Klein,还有其他人一起推动了“连续群理论”的发展,对Klein而言,一开始,这是一种试图统一处理Euclid几何和非欧几何这两种不同类型几何的方法。虽然这个课题源于十九世纪,但真正起步却是在二十世纪,作为一种能够将许多不同问题归并于其中来研究的统一性框架,李群理论深深地影响了二十世纪。
也许有人认为李群只不过在几何范畴内特别重要而已,因为这是出于连续变量的需要。然而事实并非如此,有限域上的李群的类似讨论可以给出有限群,并且大多数有限群都是通过这种方式产生的。因此李群理论的一些技巧甚至可以被应用到有限域或者是局部域等一些离散情形中。这方面有许多纯代数的工作,例如与George Lusztig名字联系在一起的工作。在这些工作中,有限群的表示理论被加以讨论,并且我已经提到的许多技术在这里也可以找到它们的用武之地。
==有限群==
上述讨论已把我们带到有限群的话题,这也提醒了我:有限单群的分类是我必须承认的一项工作。许多年以前,也就是在有限单群分类恰要完成之时,我接受了一次采访,并且我还被问道我对有限单群分类的看法,我当时很轻率地说我并不认为它有那么重要,我的理由是有限单群分类的结果告诉我们,大多数单群都是我们已知的,还有就是一张有关若干例外情形的表,在某种意义下,这只不过是结束了一个领域。而并没有开创什么新东西,当事物用结束代替开始时,我不会感到很兴奋。但是我的许多在这一领域工作的朋友听到我这么讲,理所当然地会感到非常非常不高兴,我从那时起就不得不穿起“防弹衣”了。
在这项研究中,有一个可以弥补缺点的优点。我在这里实际上指的是在所有的所谓“散在群”(sporadic groups)中,最大的被赋予了“魔群”名字的那一个。我认为魔群的发现这件事本身就是有限单群分类中最叫人兴奋的结果了。可以看出魔群是一个极其有意思的动物而且现在还处于被了解之中。它与数学的许多分支的很大一部分有着意想不到的联系,如与椭圆模函数的联系,甚至与理论物理和量子场论都有联系。这是分类工作的一个有趣的副产品。正如我所说的,有限单群分类本身关上了大门,但是魔群又开启了一扇大门。
==物理的影响==
现在让我把话题转到一个不同的主题,即谈谈物理的影响。在整个历史中,物理与数学有着非常悠久的联系,并且大部分数学,例如微积分,就是为了解决物理中出现的问题而发展起来的。在二十世纪中叶,随着大多数纯数学在独立于物理学时仍取得了很好的发展,这种影响或联系也许变得不太明显,但是在本世纪最后四分之一的时间里,事情发生了戏剧性的变化,让我试着简单地评述一下物理学和数学,尤其是和几何的相互影响。
接下来是弦理论并且这已经是过时的了!我们现在所谈论的是M一理论,这是一个内容丰富的理论,其中同样有大量的数学,从关于它的研究中得到的结果仍有待于进一步消化并且足可以让数学家们忙上相当长的时间。
==历史的总结==
我现在作一个简短的总结。让我概括地谈谈历史:数学究竟发生了什么?我相当随意地把十八世纪和十九世纪放在了一起,把它们当做我们称为古典数学的时代,这个时代是与Euler和Gauss这样的人联系在一起的,所有伟大的古典数学结果也都是在这个时代被发现和发展的。有人也许认为那几乎就是数学的终结了,但是相反地,二十世纪实际上非常富有成果,这也是我一直在谈论的。
0
个编辑