“麦克斯韦妖”版本间的差异

来自iCenter Wiki
跳转至: 导航搜索
简介
(19个版本:all)
 
(3位用户的7个中间修订版本未显示)
第1行: 第1行:
 
=简介=
 
=简介=
 
假设一个盒子,里面的粒子分布是均匀的,也就是说温度相同,在中间设一道闸门,有一个小妖在把守,它只容许速度快的粒子通过,这样一段时间后盒子两边形成了温差,这就违反了[http://baike.baidu.com/view/24939.htm 热力学第二定律].
 
假设一个盒子,里面的粒子分布是均匀的,也就是说温度相同,在中间设一道闸门,有一个小妖在把守,它只容许速度快的粒子通过,这样一段时间后盒子两边形成了温差,这就违反了[http://baike.baidu.com/view/24939.htm 热力学第二定律].
 +
 +
[[File:mkswy.png|400px]]
 +
=反驳=
 +
[[Landour's Principle]] 麦克斯韦妖需要有智能来分辨高速粒子和慢速粒子。这意味着减少一个系统熵需要智能。
 +
[http://www.guokr.com/article/117008/ 因为遗忘,麦克斯韦妖不可能存在]
 +
 +
=引申=
 +
麦克斯韦妖的智能是对系统无知的压缩,熵的减少,根据Landour‘s principle,每产生一个比特的信息,最少耗散ktln2的能量。

2016年4月6日 (三) 03:01的最后版本

简介

假设一个盒子,里面的粒子分布是均匀的,也就是说温度相同,在中间设一道闸门,有一个小妖在把守,它只容许速度快的粒子通过,这样一段时间后盒子两边形成了温差,这就违反了热力学第二定律.

400px

反驳

Landour's Principle 麦克斯韦妖需要有智能来分辨高速粒子和慢速粒子。这意味着减少一个系统熵需要智能。 因为遗忘,麦克斯韦妖不可能存在

引申

麦克斯韦妖的智能是对系统无知的压缩,熵的减少,根据Landour‘s principle,每产生一个比特的信息,最少耗散ktln2的能量。