查看“Student-Research-Training-THU”的源代码
←
Student-Research-Training-THU
跳转至:
导航
、
搜索
因为以下原因,你没有权限编辑本页:
您刚才请求的操作只对以下1个用户组开放:
用户
。
您可以查看并复制此页面的源代码:
'''SaturnLab-学术活动''' =2018-SRT= * 2018年1月20日 郑文勋: [x] Asynchronous Methods for DRL * 2018年1月6日 柳荫: [x] Residual Networks Behave Like Ensembles of Relatively Shallow Networks, NIPS 2016. https://arxiv.org/abs/1605.06431. =数据管理 = ==神经网络索引== [x] A Machine Learning Approach to Databases Indexes, ML Systems Workshop at NIPS 2017. [x] The Case for Learned Index Structures, https://arxiv.org/abs/1712.01208. ==近似树索引 == [x] A-Tree: A Bounded Approximate Index Structure, sigmod 2018. ==位图索引== [x] Athanassoulis, Manos, Zheng Yan, and Stratos Idreos, UpBit: Scalable In-Memory Updatable Bitmap Indexing, sigmod 2016. =深度学习 = ==计算机视觉== ===卷积网络(图像)=== SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size. https://arxiv.org/abs/1602.07360. Xception: Deep Learning with Depthwise Separable Convolutions. https://arxiv.org/abs/1610.02357. ResNet: Deep residual learning for image recognition, CVPR 2016. https://arxiv.org/abs/1512.03385. GoogLeNet(Inception V3): Going deeper with convolutions, CVPR 2015. https://arxiv.org/abs/1409.4842. VGG: Very Deep Convolutional Networks for Large Scale Image Recognition, 2014. https://arxiv.org/abs/1409.1556. NiN: Network In Network, 2013. https://arxiv.org/abs/1312.4400. ===图像分割=== *object instance segmentation [x] Alexander Kirillov, Kaiming He, Ross Girshick, Carsten Rother, Piotr Dollár, Panoptic Segmentation, https://arxiv.org/abs/1801.00868. [x] Ronghang Hu, Piotr Dollár, Kaiming He, Trevor Darrell, Ross Girshick, '''Learning to Segment Every Thing''', https://arxiv.org/abs/1711.10370. [x] Xiaolong Wang, Ross Girshick, Abhinav Gupta, Kaiming He, '''Non-local Neural Networks''', https://arxiv.org/abs/1711.07971. [x] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick, '''Mask R-CNN''', ICCV 2017. https://arxiv.org/abs/1703.06870 ===对象检测=== *Object_Detection Feature Pyramid Networks for Object Detection, https://arxiv.org/abs/1612.03144. R-FCN: Object Detection via Region-based Fully Convolutional Networks, https://arxiv.org/abs/1605.06409. PVANET: Deep but Lightweight Neural Networks for Real-time Object Detection, https://arxiv.org/abs/1608.08021. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition, https://arxiv.org/abs/1406.4729. ===立体对象检测=== *3D_OD Voting for Voting in Online Point Cloud Object Detection 3D object proposal for object class detection 3D Fully Convolutional Network for Vehicle Detection in Point Cloud Vehicle Detection from 3D Lidar Using Fully Convolutional Network Multi-View 3D Object Detection Network for Autonomous Driving ==语音识别== *Speech Recognition [x] State-of-the-art Speech Recognition With Sequence-to-Sequence Models, https://arxiv.org/abs/1712.01769. [z] Recent progresses in deep learning based acoustic models, 2017. [z] Multichannel Signal Processing with Deep Neural Networks for Automatic Speech Recognition, TASLP 2017. [z] DeepSpeech3 Exploring Neural Transducers for End-to-End Speech Recognition. https://arxiv.org/abs/1707.07413. [z] Cold Fusion: Training Seq2Seq Models Together with Language Models, 2017. https://arxiv.org/abs/1708.06426. ==工具== ===TensorFlow系列=== DistBelief - large scale distributed deep networks, NIPS 2012. TensorFlow - A system for large-scale machine learning, OSDI 2016. TPU - In-Datacenter Performance Analysis of a Tensor Processing Unit, ISCA 2017. TFX - A TensorFlow-Based Production-Scale Machine Learning Platform, kdd 2017. ==选择== [1] Quasi-Recurrent Neural Networks,(https://arxiv.org/abs/1611.01576) [2] Training RNNs as Fast as CNNs, (https://arxiv.org/abs/1709.02755) [3] Semi-Supervised Classification with Graph Convolutional Networks, (https://arxiv.org/abs/1609.02907) [4] A Survey on Transfer Learning, (http://www3.ntu.edu.sg/home/sinnopan/publications/TLsurvey_0822.pdf) [5] How transferable are features in deep neuralnetworks? (https://arxiv.org/abs/1411.1792) [6] Progressive Neural Networks, (https://arxiv.org/abs/1606.04671) [7] One-Shot Learning of Object Categories](http://vision.stanford.edu/documents/Fei-FeiFergusPerona2006.pdf) [8] One-shot Learning with Memory-Augmented Neural Networks,(https://arxiv.org/abs/1605.06065) [9] Auto-Encoding Variational Bayes,(https://arxiv.org/abs/1312.6114) [10] Autoencoding beyond pixels using a learned similarity metric,(https://arxiv.org/abs/1512.09300)
返回
Student-Research-Training-THU
。
导航菜单
个人工具
创建账户
登录
名字空间
页面
讨论
变种
查看
阅读
查看源代码
查看历史
操作
搜索
导航
首页
实践教学
个性化3D设计与实现
人工智能实践教学
区块链技术及应用
虚拟现实技术与内容制作
超越学科界限的认知基础课程
电子工艺实习
Nand2Tetris Engine Curriculum
TULLL Creative Learning Group
Wiki上手说明
Wiki账户创建
最近更改
工具
链入页面
相关更改
特殊页面
页面信息