
Estimating Cardinalities with Deep Sketches
Andreas Kipf

Technical University of Munich
kipf@in.tum.de

Dimitri Vorona
Technical University of Munich

vorona@in.tum.de

Jonas Müller
Technical University of Munich

jonas.mueller@in.tum.de

Thomas Kipf
University of Amsterdam

t.n.kipf@uva.nl

Bernhard Radke
Technical University of Munich

radke@in.tum.de

Viktor Leis
Technical University of Munich

leis@in.tum.de

Peter Boncz
Centrum Wiskunde & Informatica

boncz@cwi.nl

Thomas Neumann
Technical University of Munich

neumann@in.tum.de

Alfons Kemper
Technical University of Munich

kemper@in.tum.de

ABSTRACT
We introduce Deep Sketches, which are compact models of
databases that allow us to estimate the result sizes of SQL
queries. Deep Sketches are powered by a new deep learning
approach to cardinality estimation that can capture corre-
lations between columns, even across tables. Our demon-
stration allows users to define such sketches on the TPC-H
and IMDb datasets, monitor the training process, and run
ad-hoc queries against trained sketches. We also estimate
query cardinalities with HyPer and PostgreSQL to visualize
the gains over traditional cardinality estimators.

1 INTRODUCTION
We introduce Deep Sketches, compact model-based represen-
tations of databases that allow us to estimate the result sizes
of SQL queries. Deep Sketches are powered by a new deep
learning approach to cardinality estimation [7] (code: [1]).
This approach builds on sampling-based estimation and ad-
dresses its weaknesses when no sampled tuples qualify a
predicate. A Deep Sketch is essentially a wrapper for a (seri-
alized) neural network and a set of materialized samples.
Estimates of intermediate query result sizes are the core

ingredient to cost-based query optimizers [11, 12]. While the
focus of this work is not to show the effect of better cardinal-
ity estimates on the quality of resulting query plans—which
is orthogonal to having better estimates in the first place, we
demonstrate that the estimates produced by Deep Sketches
are superior to estimates of traditional optimizers and often
close to the ground truth. The estimates produced by Deep
Sketches can directly be leveraged by existing, sophisticated
join enumeration algorithms and cost models. This is a more
gradual approach than the one taken by machine learning
(ML)-based end-to-end query optimizers [16].

Our demonstration allows users to define Deep Sketches
on the TPC-H and Internet Movie Database (IMDb) datasets.

Acknowledgements. T.K. acknowledges funding by SAP SE.

The latter is a real-world dataset that contains many cor-
relations and therefore proves to be very challenging for
cardinality estimators. To create a Deep Sketch, users select
a subset of tables and define a few parameters such as the
number of training queries. Users can then monitor the train-
ing progress, including the execution of training queries and
the training of the deep learning model. Once the model
has been trained, users can issue ad-hoc queries against the
resulting Deep Sketch. Our user interface makes it easy to
create such queries graphically. Users can optionally specify
a placeholder for a certain column to define a query template.
For example, a movie producer might be interested in the
popularity of a certain keyword over time:
SELECT COUNT(*)
FROM title t, movie_keyword mk, keyword k
WHERE mk.movie_id=t.id AND mk.keyword_id=k.id
AND k.keyword='artificial-intelligence'
AND t.production_year=?

A placeholder has a similar effect as a group-by operation,
except that it does not operate on all distinct values of the
group-by column but instead only on the values present
in the column sample that comes with the sketch. In other
words, we instantiate the query templatewith values (literals)
from the column sample. Besides this being an interesting
feature for data analysts, it serves the purpose of visualizing
the robustness of our deep learning approach to cardinality
estimation1. The result of a query template can be displayed
as a bar or as a line plot with one data point per template
instance. Using overlays, we show the difference to the car-
dinality estimates produced by HyPer2 [6] and PostgreSQL

1Note that the deep learning model is not necessarily trained with literals
present in the column sample. In fact, it can happen (and is even likely for
columns with many distinct values) that a literal from the column sample
has never been seen by the model.
2We are referring to the research version of HyPer developed at the Techni-
cal University of Munich.

ar
X

iv
:1

90
4.

08
22

3v
1

 [
cs

.D
B

]
 1

7
A

pr
 2

01
9

as well as to the true cardinalities—obtained by executing
the queries with HyPer.

Deep Sketches feature a small footprint size (a few MiBs)
and are fast to query (within milliseconds). Due to these
facts, another application of Deep Sketches lies in the area
of previewing query result sizes. Often, rough estimates are
sufficient to inform users whether executing a certain query
would be worthwhile, and sometimes even all they need—
e.g., to get an idea about the data distribution of a certain
column given some selections and/or joins. For example,
Deep Sketches could be deployed in a web browser or within
a cell phone to preview query results.

2 DEEP SKETCHES
Deep Sketches are powered by a new (supervised) deep learn-
ing approach to cardinality estimation [7] that has recently
been adopted in [4]. The idea of this approach is to execute
generated queries against a database to obtain true cardinali-
ties (labels in ML), featurize these queries, and feed them into
a neural network. Of course, instead of generating queries
and uniformly sampling the search space, one could also use
past user queries.
Besides static query features—such as selections or joins,

we featurize information about qualifying base table sam-
ples. In other words, in addition to executing a training query
against the full database, we execute each base table selection
against a set of materialized samples (e.g., 1000 tuples per
base table). Thus, we derive bitmaps indicating qualifying
samples for each base table. These bitmaps are then used as
an additional input to the deep learning model. Besides this
integration of (runtime) sampling, another differentiating
factor from other learning-based approaches to cardinality
estimation [18, 20] is the use of a model that employs set
semantics, inspired by recent work on Deep Sets [22], a neural
network module that operates on sets. This decision rests
on the fact that the cardinality of a query is independent of
its query plan—e.g., both (A Z B) Z C and A Z (B Z C) can
be represented as {A,B,C}. While the Deep Sets model only
addresses single sets, our model—called multi-set convolu-
tional network (MSCN)—represents three sets (tables, joins,
and predicates) and can capture correlations between sets.

On a high level, the MSCN model can be described as fol-
lows: For each set, it has a separate module, comprised of
one fully-connected multi-layer perceptron (MLP) per set
element with shared parameters. We average module out-
puts, concatenate them, and feed them into a final output
MLP, which captures correlations between sets and outputs
a cardinality estimate. The featurization of a query is very
straightforward. Based on the training data, we enumerate
tables, columns, joins, and predicate types (=, <, and >) and
represent them as unique one-hot vectors. We represent each

median 90th 95th 99th max mean

Deep Sketch 3.82 78.4 362 927 1110 57.9
HyPer 14.6 454 1208 2764 4228 224
PostgreSQL 7.93 164 1104 2912 3477 174

Table 1: Estimation errors on the JOB-light workload.

literal in a query as a value val (val ∈ [0, 1]), normalized
using the minimum and maximum values of the respective
column. Similarly, we logarithmize and then normalize car-
dinalities (labels) using the maximum cardinality present
in the training data. For a detailed description of the model
and the featurization, we refer the reader to [7]. Finally, we
train our model with the objective of minimizing the mean
q-error [17] q (q ≥ 1). The q-error is the factor between the
true and the estimated cardinality.

One advantage of our approach over pure sampling-based
cardinality estimators is that it addresses 0-tuple situations,
which is when no sampled tuples qualify. In such situations,
sampling-based approaches usually fall back to an “educated”
guess—causing large estimation errors. Our approach, in
contrast, handles such situations reasonably well [7] as it
can use the signal of individual query features (e.g., predicate
types) to provide a more precise estimate. In addition, it can—
to some degree—capture correlations across joins and can
thus estimate joins without assuming independence.
Table 1 shows the estimation errors (q-errors) of our ap-

proach (Deep Sketch) compared to the cardinality estimators
of HyPer and PostgreSQL version 10.3. The results are on
JOB-light [1], which is a workload derived from the Join
Order Benchmark (JOB) [11] containing 70 of the original
113 queries. In contrast to JOB, JOB-light does not contain
any predicates on strings nor disjunctions and only contains
queries with one to four joins. Most queries in JOB-light have
equality predicates on dimension table attributes. The only
range predicate is on production_year. Considering that
MSCN was trained with a uniform distribution between =,
<, and > predicates, it performs reasonably well. This exper-
iment shows that MSCN can generalize to workloads with
distributions different from the training data. By allowing
users of our demonstration to issue ad-hoc queries, we want
to enable them to experience this generalizability.
We believe that Deep Sketches are an important step to-

wards a learned database system [8], and can be used in con-
junction with other recently proposed ML-powered compo-
nents for join enumeration [10, 14], adaptive query process-
ing [19], indexing [9, 21], viewmaterialization [13], workload
management [5], and query performance prediction [15].

Define Deep Sketch:

● set of tables
● number of materialized samples
● number of training queries
● number of training epochs

1

Generate train. queries:

● uniformly choose tables, columns,
and predicate types

● draw literals from database

2 Execute train. queries:

● against database to obtain true
cardinalities for entire queries

● against materialized samples

3

Train Deep Sketch:

● featurize static query features
and bitmaps

● train neural network for
specified number of epochs

4

(a) Creation of a sketch.

Deep Sketch {A, B}

MSCN
(a neural network)

SQL query
cardinality
estimate

sample
table A

tuple 1

tuple 2

tuple n

sample
table B

tuple 1

tuple 2

tuple n

(b) Result size estimation with a sketch.

Figure 1: Creation and usage of a Deep Sketch. Depending on the number of training queries, training can be
expensive. However, once a sketch is trained, it allows for an efficient result size estimation of SQL queries.

3 DEMONSTRATION
As stated earlier, a Deep Sketch is essentially a wrapper for
a trained MSCN model and a set of materialized samples.
In our demonstration, users can experience the end-to-end
process of defining, training, and using trained sketches to
estimate the result sizes of ad-hoc SQL queries. We support
the TPC-H and IMDb datasets.
Figure 1a shows the four steps involved to create a new

sketch. First (1), users need to select a subset of tables from
either schema and define a few parameters, including the
number of materialized base table samples, the number of
training queries, and the number of training epochs. Next
(2), we generate uniformly distributed training queries on
the specified tables in our backend, and (3) execute them
with HyPer to obtain true cardinalities and to extract bitmaps
indicating qualifying samples. To accelerate this process
during our demonstration, we plan to execute the training
queries (in parallel) on multiple HyPer instances. Finally (4),
we featurize the training queries and train the MSCN model
for the specified number of epochs.

To give a point of reference on the training costs, training
the model with 90,000 queries over 100 epochs takes almost
39 minutes on an Amazon Web Services (AWS) ml.p2.xlarge
instance using the PyTorch framework [2] with CUDA. Since
this number is too high for an interactive user experience,
we address this problem in three ways.

First, we allow users to control the number of training
queries and epochs. For a small number of tables, 10,000
queries will already be sufficient to achieve good results.
Note that the training time decreases linearly with fewer
epochs. From our experience, 25 epochs are usually enough
to achieve a reasonable mean q-error on a separate validation
set. Second, we offer pre-built (high quality) models that can
be queried right away. Third, we allow users to train new
models while querying existing ones.

Figure 1b illustrates a Deep Sketch on two tables A and B.
The interface of a sketch is very simple, it consumes a SQL
query and returns a cardinality estimate.
Figure 2 shows our web interface for Deep Sketches. On

the left, we allow users to specify SQL queries, and on the
right, we display query results (estimated and true cardinali-
ties). On the top (SHOW SKETCHES), users can select existing
and create new sketches as described above. To query a
sketch, users do not need enter SQL directly (the SQL string
shown in the web interface is only displayed for information
purposes). Instead, we provide them with a simple graphical
query interface. By clicking on a table, it is added to the
query. When a user selects multiple tables, we automatically
add the corresponding join predicates to the query (based
on the single PK/FK relationships that exist between tables).
Users can also define selections on base tables by click-

ing the respective columns in the schema. We support both
equality and range predicates. In addition, we allow users to
specify a placeholder for a certain column. Since our Deep
Sketch implementation can only estimate single queries, we
automatically instantiate such query templates and—in the
background—execute each instance separately against the
sketch. To create such an instance, we draw a value from
the column sample that is part of the sketch. Optionally,
users can select a function to be applied to these values. For
example, for columns with many distinct values—such as
Date columns, users may want to “group” the results by year
(e.g., EXTRACT(YEAR FROM date)). To serve such queries, we
generate multiple range queries (one for each year found in
the sample) to be issued against the sketch. We also support
grouping the output into equally sized buckets based on the
minimum and maximum values from the sample.

When a user hits the EXECUTE button, we issue the query
against HyPer to compute its true cardinality as well as
against the Deep Sketch and the cardinality estimators of
HyPer and PostgreSQL to obtain estimates. The query results

Figure 2: Web interface for Deep Sketches.

are displayed with different overlays as they arrive. On the
X-axis we denote values from the placeholder column and
on the Y-axis we plot the estimated and true cardinalities.
We support both bar and line charts and allow users to hide
the results of individual systems.
We also use TensorBoard [3] to visualize the neural net-

work architecture of our model and the training phase.

4 CONCLUSIONS
We have introduced Deep Sketches, which are compact rep-
resentations of databases that allow us to estimate the result
sizes of SQL queries. Our demonstration allows users to expe-
rience the end-to-end training and querying process of these
sketches. The goal of this work is to show that a learned
cardinality model can compete with and even outperform
traditional cardinality estimators, especially for highly cor-
related data. Our audience can specify ad-hoc queries and
thereby observe that ML might indeed be the right hammer
for the decades-old cardinality estimation job. Clearly, more
research is needed to automate the training and utilization of
Deep Sketches in query optimizers. One question—that we
currently outsource to our users—is for which schema parts
we should build such sketches. Besides further improving car-
dinality estimation for query optimization, another avenue
we could take in future work is to deploy Deep Sketches—
which offer a small footprint size—on the client to preview
query results.

REFERENCES
[1] Learned Cardinalities in PyTorch. https://github.com/andreaskipf/

learnedcardinalities.
[2] PyTorch. https://pytorch.org/.
[3] TensorBoard. https://www.tensorflow.org/tensorboard.
[4] S. Hasan, S. Thirumuruganathan, J. Augustine, N. Koudas, and G. Das.

Multi-Attribute Selectivity Estimation Using Deep Learning. CoRR,
abs/1903.09999, 2019.

[5] S. Jain, J. Yan, T. Cruanes, and B. Howe. Database-Agnostic Workload
Management. In CIDR, 2019.

[6] A. Kemper and T. Neumann. HyPer: A Hybrid OLTP & OLAP Main
Memory Database System Based on Virtual Memory Snapshots. In
ICDE, 2011.

[7] A. Kipf, T. Kipf, B. Radke, V. Leis, P. A. Boncz, and A. Kemper. Learned
Cardinalities: Estimating Correlated Joins with Deep Learning. In
CIDR, 2019.

[8] T. Kraska, M. Alizadeh, A. Beutel, E. H. Chi, A. Kristo, G. Leclerc,
S. Madden, H. Mao, and V. Nathan. SageDB: A Learned Database
System. In CIDR, 2019.

[9] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis. The Case for
Learned Index Structures. In SIGMOD, 2018.

[10] S. Krishnan, Z. Yang, K. Goldberg, J. M. Hellerstein, and I. Stoica.
Learning to Optimize Join Queries With Deep Reinforcement Learning.
CoRR, abs/1808.03196, 2018.

[11] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neumann.
How Good Are Query Optimizers, Really? PVLDB, 2015.

[12] V. Leis, B. Radke, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and
T. Neumann. Query Optimization Through the Looking Glass, and
What We Found Running the Join Order Benchmark. VLDBJ, 2018.

[13] X. Liang, A. J. Elmore, and S. Krishnan. Opportunistic View Materi-
alization with Deep Reinforcement Learning. CoRR, abs/1903.01363,
2019.

[14] R. Marcus and O. Papaemmanouil. Deep Reinforcement Learning for
Join Order Enumeration. In aiDM, 2018.

[15] R. Marcus and O. Papaemmanouil. Plan-Structured Deep Neural Net-
work Models for Query Performance Prediction. CoRR, abs/1902.00132,
2019.

[16] R. Marcus and O. Papaemmanouil. Towards a Hands-Free Query
Optimizer through Deep Learning. In CIDR, 2019.

[17] G. Moerkotte, T. Neumann, and G. Steidl. Preventing Bad Plans by
Bounding the Impact of Cardinality Estimation Errors. PVLDB, 2009.

[18] J. Ortiz, M. Balazinska, J. Gehrke, and S. S. Keerthi. Learning State
Representations for Query Optimization with Deep Reinforcement
Learning. In DEEM, 2018.

[19] I. Trummer, S. Moseley, D. Maram, S. Jo, and J. Antonakakis. Skin-
nerDB: Regret-Bounded Query Evaluation via Reinforcement Learning.
PVLDB, 2018.

[20] C. Wu, A. Jindal, S. Amizadeh, H. Patel, W. Le, S. Qiao, and S. Rao.
Towards a Learning Optimizer for Shared Clouds. PVLDB, 2018.

[21] Y. Wu, J. Yu, Y. Tian, R. Sidle, and R. Barber. Designing Succinct
Secondary Indexing Mechanism by Exploiting Column Correlations.
CoRR, abs/1903.11203, 2019.

[22] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Póczos, R. R. Salakhutdinov,
and A. J. Smola. Deep Sets. In NIPS, 2017.

https://github.com/andreaskipf/learnedcardinalities
https://github.com/andreaskipf/learnedcardinalities
https://pytorch.org/
https://www.tensorflow.org/tensorboard

	Abstract
	1 Introduction
	2 Deep Sketches
	3 Demonstration
	4 Conclusions
	References

