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Integer multiplication in time O(n logn)

DaviD HARVEY AND JORIS VAN DER HOEVEN

ABSTRACT. We present an algorithm that computes the product of two n-bit
integers in O(nlogn) bit operations.

1. INTRODUCTION

Let M(n) denote the time required to multiply two n-bit integers. We work in
the multitape Turing model, in which the time complexity of an algorithm refers
to the number of steps performed by a deterministic Turing machine with a fixed,
finite number of linear tapes [34]. The main results of this paper also hold in
the Boolean circuit model [40, Sec. 9.3], with essentially the same proofs. We write
f(n) = O(g(n)) (respectively f(n) = Q(g(n))) to indicate that there exist constants
C > 0 and ng such that f(n) < Cg(n) (respectively f(n) = Cg(n)) for all n > ny,
and f(n) = O(g(n)) to mean that both f(n) = O(g(n)) and f(n) = Q(g(n)) hold.

Schonhage and Strassen conjectured in 1971 that the true complexity of integer
multiplication lies in ©(nlogn) [39], and in the same paper established their famous
upper bound M(n) = O(nlognloglogn). In 2007 their result was sharpened by
Fiirer to M(n) = O(nlogn K'°& ™) [12, 13] for some unspecified constant K > 1,
where log* n denotes the iterated logarithm, i.e., log* 2 := min{k > 0 : log°* = < 1}.
Prior to the present work, the record stood at M(n) = O(nlogn4'°8" ™) [22].

The main result of this paper is a verification of the upper bound in Schénhage
and Strassen’s conjecture, thus completely closing the remaining 4'°¢" ™ gap:

Theorem 1.1. There is an integer multiplication algorithm achieving
M(n) = O(nlogn).

If the Schénhage—Strassen conjecture is correct, then Theorem 1.1 is asymp-
totically optimal. Unfortunately, no super-linear lower bound for M(n) is known.
Perhaps the best available evidence in favour of the conjecture is the Q(nlogn)
lower bound [6, 35] that has been proved for the “on-line” variant of the problem,
in which the k-th bit of the product must be written before the (k + 1)-th bits of
the multiplicands are read. Again, the true complexity of on-line multiplication is
not known: currently, the best known upper bound is O(nlogn exp(Cy/loglogn))
for C' = +/2log2 + o(1) [29].

Theorem 1.1 has many immediate consequences, as many computational prob-
lems may be reduced to integer multiplication. For example, the theorem implies
that quotients and k-th roots of real numbers may be computed to a precision of n
significant bits in time O(nlogn), and that transcendental functions and constants
such as e* and 7 may be computed to precision n in time O(nlog®n) [5].

Harvey was supported by the Australian Research Council (grant FT160100219).
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2 DAVID HARVEY AND JORIS VAN DER HOEVEN

Another interesting application is to the problem of computing DFTs (discrete
Fourier transforms) over C. Given a transform length m > 2 and a target accuracy
of p = Q(logm) bits, it was pointed out in [20, 25] that one may use Bluestein’s
trick [2] followed by Kronecker substitution [14, Corollary 8.27] to reduce a given
DFT of length m to an integer multiplication problem of size O(mp). Theorem
1.1 then implies that the DFT may be evaluated in time O(mplog(mp)). This
compares favourably with the traditional FFT (fast Fourier transform) approach,
which requires O(mlogm) operations in C, and thus time O(mlogm M(p)) =
O(mplog mlogp) in the Turing model.

All of the algorithms presented in this paper can be made completely explicit,
and all implied big-O constants are in principle effectively computable. On the other
hand, we make no attempt to minimise these constants or to otherwise exhibit a
practical multiplication algorithm. Our aim is to establish the theoretical O(nlogn)
bound as directly as possible.

We will actually describe two new multiplication algorithms. The first one de-
pends on an unproved hypothesis concerning the least prime in an arithmetic pro-
gression. This hypothesis is much weaker than standard conjectures in this area,
but somewhat stronger than the best unconditional results currently available. We
give only a brief sketch of this algorithm (see Section 1.2.1). A detailed treatment
is given in the companion paper [24], which also presents an analogue of this al-
gorithm for multiplication in F,[z]. The bulk of the present paper (Sections 2-5)
concentrates on working out the details of the second algorithm, which is technically
more involved, but has the virtue of reaching the O(nlogn) bound unconditionally.

In the remainder of Section 1, we review the literature on integer multiplication
(Section 1.1), and give an overview of the new algorithms (Section 1.2).

1.1. Survey of integer multiplication algorithms. The first improvement on
the classical M(n) = O(n?) bound was found by Karatsuba in 1962. Significant
progress was made during the 1960s by Toom, Cook, Schénhage and Knuth; see
[25, Sec. 1.1] for further historical details and references for this period. FFTs were
brought into the picture by Schonhage and Strassen [39] soon after the publication
of the FFT by Cooley and Tukey [7]; see [28] for more on the history of the FFT.
The multiplication algorithms published since [39] may be roughly classified into
four families:

(1) Schonhage—Strassen’s first algorithm [39] is, in hindsight, the most straight-
forward FFT-based integer multiplication algorithm imaginable. By splitting the
n-bit multiplicands into chunks of size ©(logn), they reduce to the problem of mul-
tiplying polynomials in Z[z] of degree ©(n/logn) and coefficient size ©(logn). The
product in Z[z] is handled by means of FFTs over C, i.e., evaluating the polyno-
mials at suitable roots of unity, multiplying their values pointwise in C, and then
interpolating to obtain the product polynomial. Elements of C are represented
approximately, with a precision of ©(logn) bits. Arithmetic operations in C (such
as multiplication) are reduced to arithmetic in Z by scaling by a suitable power of
two. This leads to the recursive estimate

M(n) = O(nM(n')) + O(nlogn), n’ = O(logn),
whose explicit solution is

M(n) = O(K'¢ " nlognloglogn - - -log®((1°8" M=1 p)
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for some constant K > 0. The algorithm achieves an exponential size reduction at
each recursion level, from n to O(logn), and the number of levels is log™ n + O(1).

Pollard suggested a similar algorithm at around the same time [36], working over
a finite field rather than C. He did not analyse the bit complexity, but with some
care one can prove essentially the same complexity bound as for the complex case
(some technical difficulties arise due to the cost of finding suitable primes; these
may be resolved by techniques similar to those discussed in [25, Sec. 8.2]).

(2) Schionhage—Strassen’s second algorithm is the more famous and arguably
the more ingenious of the two algorithms presented in [39]. It is probably the
most widely used large-integer multiplication algorithm in the world today, due to
the highly optimised implementation included in the free GNU Multiple Precision
Arithmetic Library (GMP) [17, 15], which underlies the large-integer capabilities
of all of the major contemporary computer algebra systems.

The basic recursive problem is taken to be multiplication in Z/(2"+1)Z, where n
is a power of two. Let n/ = 2/(1°8220)/2] — @(n'/2) and T = 2n/n’ = O(n'/?), so
that (n')? € {2n,4n} and T | n’; then by splitting the inputs into chunks of size n’/2,
the problem is reduced to multiplication in R[z]/(zT +1) where R := Z/(2" +1)Z.
The powers of 2 in R are sometimes called “synthetic” roots of unity, as they
have been synthesised algebraically, or “fast” roots of unity, as one can multiply
an element of R by an arbitrary power of 2 in linear time, i.e., in time O(n').
Consequently, for w := 2"/T one may evaluate a polynomial at w,w?,...,w??T !
(the roots of 7 +1) via the FFT in time O((n’ logn’)n’) = O(nlogn). The original
multiplication problem is thus reduced to T" pointwise multiplications in R, which
are handled recursively. Writing M;(n) for the cost of a product in Z/(2™ + 1)Z,
one obtains the recurrence

(1.1) Mi(n) < %” Mi(n')+ O(nlogn), ' = O(n'/?),

Unlike the first Schonhage—Strassen algorithm, this algorithm performs only a geo-
metric size reduction, from n to O(n'/?), at each recursion level, and the number
of recursion levels is log, logn + O(1) = O(loglogn).

The constant 2 in (1.1), which arises from zero-padding in the initial splitting
stage, plays a crucial role in the complexity analysis: it ensures that at each re-
cursion level, the total cost of the “fast” FFTs remains O(nlogn), with the same
implied constant at each level. The overall cost is thus M (n) = O(nlognloglogn).

(3) Firer’s algorithm [12, 13] combines the best features of the two Schonhage—
Strassen algorithms: the exponential size reduction from the first algorithm, and
the fast roots of unity from the second one. The overall strategy is similar to
the first algorithm, but instead of working over C, one uses a bivariate splitting
to reduce to a polynomial multiplication problem over R := Cly]/(y" + 1), where
r = O(logn) is a power of two. This ring contains a synthetic root of unity y of
order 2r, but also inherits higher-order roots of unity from C. Elements of C are
represented approximately, with a precision of O(logn) bits; thus an element of R
occupies O((logn)?) bits.

Firer’s key insight is to apply the Cooley—Tukey FFT decomposition in radix 2r
instead of radix two. He decomposes each “long” transform of length ©(n/(logn)?)
into many “short” transforms of length 2r, with one round of expensive “twiddle
factor” multiplications interposed between each layer of short transforms. The short
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transforms take advantage of the synthetic roots of unity, and the twiddle factor
multiplications are handled recursively (via Kronecker substitution). This leads to
the recurrence

M(n):O(

and then to the explicit bound M(n) = O(nlogn K'°¢" ™) for some constant K > 1.
Fiirer did not give a specific value for K, but it is argued in [25, Sec. 7] that careful
optimisation of his algorithm leads to the value K = 16.

Several authors have given variants of Fiirer’s algorithm that also achieve M(n) =
O(nlogn K log” ™), using essentially the same idea but working over different rings.
De, Kurur, Saha and Saptharishi [10] replace C by a p-adic ring Q,; this has the
benefit of avoiding numerical analysis over C, but the value of K becomes somewhat
larger. Covanov and Thomé give another variant that achieves K = 4, conditional
on a conjecture on the distribution of generalised Fermat primes [8].

LM ) + Olunlogr), o = Of(ogn)?),

n'logn’

(4) The Harvey—van der Hoeven—Lecerf algorithm [25] follows Fiirer in decom-
posing a “long” transform into many “short” transforms of exponentially smaller
length. However, instead of working over a ring containing fast roots of unity, one
works directly over C (as in the first Schonhage—Strassen algorithm), and converts
the short transforms back to multiplication problems via Bluestein’s trick [2]. These
short products are then handled recursively.

The first version given in [25] achieved M(n) = O(nlogn K'°8" ") with K = 8.
The value of K was improved gradually over a sequence of papers [18, 19, 21],
reaching K = 4 in [22]. All of these algorithms perform exponential size reduction,
and the number of recursion levels is log™ n + O(1).

An interesting feature of these algorithms — related to the fact that they dispense
with the need for fast roots of unity — is that they can be adapted to prove bounds
of the form O(nlogn K'°8 ") for the cost of multiplying polynomials in F,lz] of
degree n (for fixed ¢). This was first established with the constant K = 8 in [26],
and improved to K = 4 in [23]. As mentioned previously, the first of the two new
algorithms presented in this paper may be adapted to obtain an O(nlogn) bound
for the F,[z] case [24], but unfortunately this result is still conditional and so does
not yet supersede the unconditional O(nlogn 4'°¢” ™) bound given in [23].

1.2. Overview of new algorithms. Our new algorithms are motivated by the
observation that certain multivariate polynomial rings admit particularly efficient
multiplication algorithms. Let r be a power of two, and for d > 2 consider the ring

(1.2) Rlzy,..wq1)/(a =1, a7 =1),  R:=Clyl/(y" +1),

where t; | 2r for all i. One may multiply in this ring by first using FFTs to
evaluate each ; at the synthetic #;-th roots of unity (the powers of y?"/%), then
multiplying pointwise in R, and finally performing inverse FFTs. Such transforms
were studied extensively by Nussbaumer in the late 1970s (see for example [31]),
and are sometimes known as fast polynomial transforms. They consist entirely of
additions and subtractions in C, and require no multiplications in C whatsoever.
In Sections 1.2.1 and 1.2.2 below, we outline two different ways of fashioning
an integer multiplication algorithm from the polynomial multiplication algorithm
just described. The key issue is to show how to transport an integer multiplication
problem, which is intrinsically one-dimensional, to a ring of the type (1.2).
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In both cases, we begin with the following setup. Suppose that we wish to multi-
ply two n-bit integers. We choose a dimension parameter d > 2 and distinct primes
51,...,8q¢ ~ (n/logn)'/? subject to certain conditions that will be explained in
Sections 1.2.1 and 1.2.2. Just as in the first Schénhage—Strassen algorithm, we
split the inputs into around n/logn chunks of roughly logn bits, thereby reducing
the problem to multiplication in Z[z]/(x* % — 1). Now, following a technique
described by Agarwal and Cooley [1] (which is closely related to the Good—Thomas
FFT algorithm [16, 41]), we observe that the Chinese remainder theorem induces an
isomorphism Z[x]/(z** % —1) = Z[z1, ..., zq]/(2]' —1,..., 2" —1), so the problem
amounts to computing a product in the latter ring. For this, it suffices to show how
to efficiently compute a multidimensional complex DFT of size s; X -+ X s4, i.e.,
with respect to the complex s;-th roots of unity, to an accuracy of O(logn) bits.

1.2.1. A conditional algorithm — Rader’s trick. Suppose that we are able to choose
the primes si,...,84 so that s; = 1 (mod r), where r is a power of two, and
where the s; are not much larger than r. We may then deploy a multidimensional
generalisation of Rader’s algorithm [37] to reduce the given DFT of size s1 X - - - X 84
to a multiplication problem in the ring Clzy,...,zq]/(z5 ™" — 1,..., 257" — 1)
(together with some lower-dimensional multiplication problems of negligible cost).
Crucially, the convolution lengths have been reduced from s; to s; — 1. Writing
s; — 1 = q;r, where the ¢; are “small”, we may further reduce this product to a
collection of complex DFTs of size g1 X -+ X qq, plus a collection of multiplication
problems in Clzy,...,zq]/(z] — 1,...,27, — 1). After replacing x4 with /"y, we
see that the latter products are exactly of the type (1.2). As discussed previously,
we may use synthetic FFTs to reduce such a product to a collection of pointwise
products in R = C[y]/(y"+1). These in turn are converted to integer multiplication
problems via Kronecker substitution, and then handled recursively.

The main sticking point in the above algorithm is the cost of the auxiliary DFT's
of size q; X -+ - X qq. There are various options available for evaluating these DFTs,
but to ensure that this step does not dominate the complexity, the key issue is to
keep the size of the ¢; under control. What we are able to prove is the following.
For positive, relatively prime integers m and a, define

P(a,m) :=min{q > 0 : ¢ prime and ¢ = a mod m},

and put P(m) := max, P(a,m). Linnik’s theorem states that there is an absolute
constant L > 1 such that P(m) = O(m!). The best published value for L is
currently L = 5.18 [42], and under the Generalised Riemann Hypothesis one may
take L = 2 + ¢ for any € > 0 [27]. In the companion paper [24], we prove that if
Linnik’s theorem holds for some L < 1+ ﬁ, and if we take d near 105, then the
cost of the auxiliary DFTs can be controlled and one does in fact obtain an overall
M(n) = O(nlogn) bound. (Actually, in [24] we work over a finite field, but the
same method should work over C, possibly with a different threshold for L.)

On the other hand, it is widely expected that the bound P(m) = O(m*) should
hold for any L > 1. For this reason, we strongly suspect that the algorithm
sketched above does run in time O(nlogn), despite us being unable to supply a
proof. For further discussion, and examples of even stronger bounds for P(m) that
are expected to hold, see [24].
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FIGURE 1. Torus (R/Z)? with 13 x 11 source array (white circles)
superimposed over 16 x 16 target array (black circles)

Remark 1.2. The idea of evaluating a multidimensional transform via a combina-
tion of Rader’s algorithm and polynomial transforms was previously suggested in
a different context by Nussbaumer and Quandalle [32, p. 141].

1.2.2. An unconditional algorithm — Gaussian resampling. The rest of the paper
is devoted to the second method. Here we choose the primes s1,...,s4 in such a
way that each s; is slightly smaller than a power of two ¢;, and so that ¢;---t; =
O(s1---84). Finding such primes is easily accomplished using the prime number
theorem with a suitable error term (see Lemma 5.1).

Assume as before that we wish to compute a complex multidimensional DFT of
size 81 X «-+ X 84, to an accuracy of O(logn) bits. Our key innovation is to show
that this problem may be reduced directly to the problem of computing a complex
multidimensional DFT of size t1 X « -+ X tq4.

The idea of the reduction is as follows. Suppose that we are given as input an
51 X - -+ X sq array of complex numbers u = (uj, . j,)o<j<s;- We may regard this
array as lying inside the d-dimensional unit torus (R/Z)%: we imagine the coefficient
Uj,.... ja. tO be plotted at coordinates (ji/s1,...,Jjq/sq) in the torus (see Figure 1).
We construct from v an intermediate ¢; X - - - Xtg array v = (Vk, ...k, o<k <t;- Again,
we think of vy, .k, as being plotted at coordinates (k1/t1,...,kq/tq) in the torus.
The coefficients of v are defined to be certain linear combinations of the coefficients
of u. The weights are essentially d-dimensional Gaussians, so each coefficient of v
depends mainly on the “nearby” coefficients of u within the torus.

This construction has two crucial properties. First, the rapid decay of the Gaus-
sians allows us to compute (i.e., approximate) the coefficients of v very quickly from
those of u; indeed, the cost of this step is asymptotically negligible compared to the
cost of the DFTs themselves. Second, using the fact that the Fourier transform of a
Gaussian is a Gaussian, we will show that 4 and ¥ (the DFTs of v and v) are related
by a fairly simple system of linear equations. In fact, the matrix of this system is
of the same type as the matrix relating v and v. The system is somewhat overde-
termined, because t1 ---ty > $1---$4. Provided that the ratios t;/s; are not too
close to 1, we will show that this system may be solved in an efficient and numeri-
cally stable manner, and that we may therefore recover 4 from ©. This procedure
forms the core of our “Gaussian resampling” method, and is developed in detail in
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Section 4. It is closely related to the Dutt—Rokhlin algorithm for non-equispaced
FFTs [11]; see Section 4.4.3 for a discussion of the similarities and differences.

We have therefore reduced to the problem of computing ¢ from v, and we are free
to do this by any convenient method. Note that this is a DFT of size t; X - -+ X tq4
rather than s; X --- X s4. In Section 3 we will show how to use a multivariate
generalisation of Bluestein’s algorithm [2] to reduce this DFT to a multiplication
problem in a ring of the form (1.2). As already pointed out, such a product may
be handled efficiently via synthetic FFTs; the details of this step are also discussed
in Section 3.

Analysis of this algorithm leads to a recurrence inequality of the form

K
n M(n') + O(nlogn), n' = nato)

(1.3) M(n) <

n/

where both K and the big-O constant are absolute, and in particular, do not depend
on d. (In Section 5 we establish (1.3) with the explicit constant K = 1728, and
in Section 5.4 we list some optimisations that improve it to K = 8.) The first
term arises from pointwise multiplications in a ring of the type R = C[y]/(y" + 1),
and the second term from the fast FFTs and other auxiliary operations, including
computing v from u and recovering @ from o.

We stress here the similarity with the corresponding bound (1.1) for the second
Schonhage—Strassen algorithm; the difference is that we are now free to choose d.
In Section 5, we will simply take d := 1729 (any constant larger than K would do),
and then it is easy to see that (1.3) implies that M(n) = O(nlogn). (A similar
analysis holds for the conditional algorithm sketched in Section 1.2.1, for different
values of K and d.)

It is striking that for fixed d, the new algorithm performs only a geometric size
reduction at each recursion level, just like the second Schonhage—Strassen algo-
rithm, and unlike the first Schonhage—Strassen algorithm or any of the post-Fiirer
algorithms. In the new algorithm, the total cost of the FFTs actually decreases
by the constant factor d/K > 1 at each subsequent recursion level, unlike in the
second Schonhage—Strassen algorithm, where it remains constant at each level, or
any of the other algorithms mentioned, where it increases by a constant factor at
each level.

Actually, with some care it is possible to allow d to grow with n, so as to achieve
size reduction faster than geometric, and still reach the desired O(nlogn) bound,
but we will not carry out this analysis.

Finally, we mention that our reduction from a DFT of size s; X - -+ X s4 to one of
size t1 X --- X tq is highly non-algebraic, and depends heavily on the archimedean
property of R. Consequently, we do not know how to give an analogue of this
algorithm for multiplication in Fg[z].

2. DFTS, CONVOLUTIONS AND FIXED-POINT ARITHMETIC

In the Turing model we cannot compute with elements of C exactly. In this sec-
tion we introduce a framework for systematic discussion of DFTs and convolutions
in the setting of fixed-point arithmetic. (This framework is loosely based on the
presentation in [25, Sec. 3].)
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2.1. Integer arithmetic. Integers are assumed to be stored in the standard bi-
nary representation. We briefly recall several well-known results concerning integer
arithmetic; see [5, Ch. 1] for further details and literature references.

Let p > 1, and assume that we are given as input x,y € Z such that |z, |y| < 2P.
We may compute = + y and  — y in time O(p). For multiplication, we will often
use the crude estimate M(p) = O(p'*?), where for the rest of the paper ¢ denotes a
small, fixed positive quantity; for definiteness, we assume that § < %. If y > 0, then
we may compute the quotients |x/y| and [z/y] in time O(p**?). More generally,
for a fixed positive rational number a/b, and assuming z,y > 0, we may compute
[(2/9)*/*] and [(z/y)*/*] in time O(p!*),

2.2. Fixed-point coordinate vectors. Fix a precision parameter p > 100. Let
Co == {u € C: |u| < 1} denote the complex unit disc, and set

Co = (27PZ[]) NCo = {27P(z + iy) : 7,y € Z and 22 + y* < 2?7},

In the Turing model, we represent an element z = 277(z 4 iy) € C, by the pair of
integers (z,y). It occupies O(p) bits of storage, as |z|, |y| < 2P. The precision p is
always known from context and does not need to be stored alongside z.

We define a round-towards-zero function p: C — C as follows. First, define
po: R = Z by po(z) = |z]| for > 0, and po(x) = [x] for & < 0. Then define
po: C — Z[i] by setting po(z + iy) = po(x) + ipo(y) for z,y € R. Observe that
lpo(u)| < |u| and |po(u) — u| < /2 for any u € C. Finally, set

p(u) == 27Ppo(2Pu), ue C.

Thus |p(u)| < |u| and |p(u) — u| < /2277 for any u € C. Clearly p(C,) C C,.
Now let V be a finite-dimensional vector space over C. In this paper, every
such V is understood to come equipped with a privileged choice of ordered basis
By ={bo,...,bm—1}, where m = dim¢ V. For the special case V = C™, we always
take the standard basis; in particular, for V' = C the basis is simply {1}.
We define a norm ||-|| : V' — [0,00) in terms of the basis By by setting

[[Mobo + < + A—1bm—1|| = mjax|/\j|, A; eC.
This norm satisfies ||u + v|| < ||ul|+]|v| and |[Au|| = |A] ||u|| for any u,v € V, A € C.
The unit ball in V is defined to be
Vo={ueV ul| <1} ={dbo+ -+ Amc1bm-1: A; € Co},
and we also define
Vo i={obo+ -+ Am_1bm_1: \j € Co }.

We extend p to a function p: V' — V by acting componentwise, i.e., we put

p(Aobo + -+ Amoibm1) = >_p(A)bj, A €C.
J

Then [|p(u)|| < |Ju|| and ||p(u) — ul| < v/2- 277 for any u € V. Clearly p(V,) C Va.
In the special case V' = C we have simply |ju|| = |u| for any u € C, and the
notations C,, C, and p: C — C all agree with their previous definitions.
In the Turing model, an element u € V, is represented by its coordinate vector
with respect to By, i.e., as a list of m elements of C,, so u occupies O(mp) bits of
storage.
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For u € V,, we systematically use the notation @ € V, to indicate a fixed-point
approximation for u that has been computed by some algorithm. We write

e(@) = 2% [[a — ull

for the associated error, measured as a multiple of 277 (the “unit in the last place”).
For example, we have the following result for addition and subtraction in V.

Lemma 2.1 (Addition/subtraction). Given as input u,v € V,, in time O(mp) we
may compute an approximation W € Vo, for w = %(u +v) € V, such that e(0) < 1.

Proof. Consider first the case m = 1, i.e., assume that V' = C. Let u = 27Pa and
v = 27Pbh where a,b € Zli] and |a|,|b] < 2P. Since the denominators of the real
and imaginary parts of 2Pw = 1(a £ b) are at most 2, we have [po(2Pw) — 2Pw| <
(3)2+(3)H2 = % Define w0 := p(w) = 27Ppo(2Pw). We may clearly compute @
in time O(p), and e(w) = 27| p(w) —w| < % < 1. The general case (m > 1)
follows by applying the same argument in each coordinate. (]

Occasionally we will encounter a situation in which we have computed an ap-
proximation @ € V, for some u € V, and we wish to compute an approximation
for cu, where ¢ > 1 is a fixed integer scaling factor for which it is known that
cu € V,. A typical example is the final scaling step in an inverse FFT. Unfortu-
nately, the obvious approximation cu might lie just outside V,. We deal with this
minor technical nuisance as follows.

Lemma 2.2 (Scaling). Let v € V and let ¢ be an integer such that 1 < c < 2P.
Assume that ||u|]| < ¢71, and let v :== cu € V,. Given as input ¢ and an approxi-
mation U € f/o, m time O(mp1+6) we may compute an approximation U € V, such
that (v) < 2c-e(a) + 3.

Proof. Again it suffices to handle the case m =1, V = C.

We first compute 277(z + iy) = ci in time O(p'*°). Note that cit might not lie
in Co, but z and y are certainly integers with O(p) bits.

Next we compute a := 22 +y? in time O(p'*%), so that a'/? = 27 |cil|. If a < 227
then already ¢t € Co, so we may simply take # := cii, and then £(0) = 27 | — v| =
2 |ct — cu| = c¢-e(u) < 2¢-e(a) + 3.

Suppose instead that a > 227 (i.e., cii ¢ C,). We then compute b :== [a'/?] > 27,
again in time O(p'*?). Let z := 2Pcii/b = (z +iy)/b and © = p(z). Note that
0 = 27P(2' +1y’) where 2’ = py(2Px/b) and y' = po(2Py/b), so we may compute ¥
in time O(p'*?). We have 3| < |z| = 2P|ci| /b < 2P |cii| /a*/? = 1, so indeed
v E @o. Moreover,

[0 = v |0 — 2| + |z = ctl + et — v| = |p(2) = 2| + [2] |1 = | +cla—ul,
50 £(0) < V2+ 2P —b| + ¢ - £(@). We also have 2P < b < a'/? +1 =27 |cii| + 1, so
0<b—2P<2P|ctt| —2P +1 < 2P |cu| — 2P + 2P jc —cu| + 1 < c-e(a) + 1.
We conclude that |2P — b| < c-&(@)+1, and therefore £(9) < 2c-e(@)+(1+v/2). O

2.3. Coeflicient rings. By a coefficient ring we mean a finite-dimensional com-
mutative C-algebra R with identity (together with a privileged basis Br). We are
chiefly interested in the following two examples:
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(1) Complex case: C itself, with the basis {1}.
(2) Synthetic case: for any r > 1, the ring Z = Cly]/(y" + 1), with the basis
{]‘7y’ M 7yT71}'
Let R be a coefficient ring of dimension r with basis Bg, and let n > 1. Then
R™ is a vector space of dimension nr over C. We associate to R™ the “nested” basis
formed by concatenating n copies of Br. In particular, we have |lu| = max; ||u;]|

for v = (ug,...,un—1) € R™. In place of the awkward expressions (R™), and

(Rm),, we write more compactly R” and R”. In the Turing model, an element of
R" occupies O(nrp) bits of storage.

Now let d > 1 and nq,...,ng = 1. We write ®%_; R™, or just ®; R™ when d
is understood, for the tensor product R™ ®pg -+ ®gr R™. It is a free R-module of
rank nj ---ng, and also a vector space over C of dimension nj - --ngr. An element
u € ®; R™ may be regarded as a d-dimensional array of elements of R of size
ny X --- X ng. For indices ji,...,jq where 0 < j; < n;, we write uy, . ;, € R for
the (j1,...,74)-th component of w.

We associate to ®; R™ the nested basis consisting of n---ng copies of Br
arranged in lexicographical order, i.e., listing the coordinates of u in the order
(uo,....0,U0,....15- - - a“nl—l,...,nd—j)- Observe then that |lul| = max;, ., Wi ...l
Instead of (®; R™), and (®; R™),, we write ®; R and ®; R?. In the Turing
model, an element of ®; R™ occupies O(ny - - - ngrp) bits of storage.

Let u € ®; R™. By an i-slice of u we mean a one-dimensional sub-array of u,
consisting of the entries u;, . ;, where ji,...,7i—1,Ji+1,.-.,ja are held fixed and
J; varies over {0,...,n; —1}. We will occasionally wish to apply a given algorithm
separately to each of the nq---n;_1n;41 - - - ng distinct i-slices of some u € ®; 1:22“
To accomplish this in the Turing model, we must first rearrange the data so that
each i-slice is stored contiguously. In the lexicographical order specified above, this
amounts to performing n; ---n;_; matrix transpositions of size n; X (n;41---nq).
This data rearrangement may be performed in time O(n; ---ngrplogn;) using a
fast matrix transposition algorithm [4, Appendix].

o

2.4. DFTs and convolutions. Let R be a coefficient ring and let n > 1. Through-
out the paper we adopt the convention that for a vector u = (ug,...,un—1) € R"
and an integer j, the expression u; always means ; mod n- For u,v € R", we define
the pointwise product u - v € R™ and the convolution product u * v € R™ by

n—1
(u-v); = u;vj, (u*v); ::Zukvj,k, 0<j<n.
k=0

Then (R™, -) and (R™,*) are both commutative rings, isomorphic respectively to
the direct sum of n copies of R, and the polynomial ring R[z]/(z™ — 1).
A principal n-th root of unity in R is an element w € R such that w” = 1,
Z;S(wj)k = 0 for every integer j # 0 (mod n), and |jwu|| = |lul| for all uw € R.
We define an associated R-linear DFT map F,,: R™ — R™ by the formula

1 n—1 )
(Fou); ==Y w*u, weR", 0<j<n
n
k=0

nfl)

It is immediate that w™! (= w is also a principal n-th root of unity in R, and

that ||F,ull < ||u|| for all uw € R™.
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Lemma 2.3 (Convolution formula). For any u,v € R™ we have
1
—uxv=nF,-1(F,u- F,v).
n

Proof. For each j, the product (F,u);(F,v); is equal to

n—1n—1

1 , 1 1
il —j(s+t) - —jk [ )
o E g w Ty, = 2 kgiow J E UV = an(u*v)],

s=0 t=0 s+t=k (mod n)

so F,(u+*v) =nF,u- F,v. On the other hand, for any w € R™ we have

n—1 n—1 n—1 n—1
1 si st 1 s(it 1
(s (o) = 35 o™ Yo~ = o5 3 (w0 Ju = S,
s=0 t=0 t=0 \ s=0
so F,-1F,w = %w. Taking w := u * v, we obtain the desired result. [

For the two coefficient rings mentioned earlier, we choose w as follows:
(1) Complex case. For R = C, let n > 1 be any positive integer, and put
w = e>™/" We denote F,, in this case by F,,: C* — C". Explicitly,
1 n—1
(Fru); = fZe_Q”ijk/"uk, weCm 0<j<n.
" =0
We also write F: C* — C" for F,-1.
(2) Synthetic case. For R = Z = Cly]/(y" + 1), let n be any positive divisor
of 2r. Then w = y?"/™ is a principal n-th root of unity in Z. We denote
F,, in this case by G,,: Z"™ — Z". Explicitly,

1%
(Qnu)j = - Zy—wjk/nuk’ weR", 0<j<n.
k=0

We also write G : Z" — %" for F,-1.

All of the concepts introduced above may be generalised to the multidimensional
setting as follows. For u,v € ®; R™, we define the pointwise product u-v € ®; R™
and the convolution product u * v € ®; R™ by

(u : v)jlr--»jd = Ujy,5a Vi, das

’I’L1—1 nd—l

(u * v)jl7~--»jd = E T E Uky,...,kqVj1—Fk1,....ja—ka"

k1=0  kg=0
Then (®; R™, ) is isomorphic to the direct sum of nj---ng copies of R, and
(®; R™, %) is isomorphic to R[x1,...,zq)/(z™ —1,...,2™ —1).

Let wy,...,wq € R be principal roots of unity of orders nq,...,ng. We define an
associated R-linear d-dimensional DFT map by taking the tensor product (over R)
of the corresponding one-dimensional DFT's, that is,

le,...,wd = ®; Fwi D ®; R™ — & R™.

Explicitly, for u € ®; R™ we have

77,171 nd—l

1 . .
_ E E —j1k1 —Jjaka
(FW17»--7Wdu)j1»--~7jd - Wi Wy Uky,....,kq-
nl .. .nd
k1=0 kq=0
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The multidimensional analogue of Lemma 2.3 is

1
2.1 ———uxv=mn1---ngF -1 —-1(F,
( ) nl"'ndu v nl nd Wy Tyee,W, ( 1

and is proved in exactly the same way.
In particular, in the “complex case” we obtain the d-dimensional transform

Forring = Qi Fn,t 4 C" — ®,C™
(take w; := €2™/7) and in the “synthetic case” the d-dimensional transform
Gnivoing = @i Gn,: QiR — Qi A™

(where each n; is a divisor of 2r, and w; = y>"/™). We define similarly Fotimg =
®; F,, and G = ®; G, .

Any algorithm for computing F,, may easily be adapted to obtain an algorithm
for computing F¥, by adjusting signs appropriately. A similar remark applies to Gy,
and to the multidimensional generalisations of these maps. For the rest of the paper,
we make use of these observations without further comment.

2.5. Fixed-point multiplication. We now consider the complexity of multipli-
cation in the coefficient rings R = C and R = Z#. In both cases we reduce the
problem to integer multiplication. For the case R = # (Lemma 2.5) we will ex-
press the complexity in terms of M(-) itself, as this eventually feeds into the main
recurrence inequality for M(-) that we prove in Section 5.3. For the case R = C
(Lemma 2.4) we do not need the best possible bound; to simplify the subsequent
complexity analysis, we prefer to use the crude estimate M(p) = O(p**?9).

Lemma 2.4 (Multiplication in C). Given as input u,v € Co, in time O(p'*9) we
may compute an approzimation W € Cq, for w = uv € C, such that e(0) < 2.

Proof. We take w = p(w), so that () = 27 ||p(w) — w|| < V2 < 2. Writing u =
27Pg and v = 27Pb where a,b € Z][i] and |a|,|b] < 2P, we have W = 27Ppy(2 Pab).
Thus @ may be computed in time O(p'*?) by multiplying out the real and imaginary
parts of a and b, and then summing and rounding appropriately. O

For the case R = %, observe first that for any u, v € Z we have ||uv|| < r||ul] ||v|,
as each coefficient of uv = (ug + -+ + ur_1y" )(vo + -+ vp_1y" ") mod y" + 1
is a sum of exactly r terms of the form +w;v;. In particular, if u,v € %, then

w/r € Xo.

Lemma 2.5 (Multiplication in %Z). Assume that r is a power of two and that
r < 2P7L. Given as input u,v € %, in time 4 M(3rp) + O(rp) we may compute an
approzimation W € Ho for w = wv/r € %o such that e(0) < 2.

Proof. Write 2Pu = Uy(y) +1U:(y) and 2Pv = Vy(y) +1Vi(y) where U; and V; are
polynomials in Z[y] of degree less than r and whose coefficients lie in the interval
[—2P,2P]. Then 2%Prw = Wy(y) +iWi(y) where

WO = (U()Vo - U1V1) mod yr + 1, Wl = (U()Vi + U1V0) mod yr + 1.

We use the following algorithm, which is based on the well-known Kronecker sub-
stitution technique [14, Corollary 8.27].

(1) Pack coefficients. Evaluate U;(2%),V;(2%) € Z for j = 0,1. As the input
coeflicients have at most p bits, this amounts to concatenating the coefficients with
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appropriate zero-padding (or one-padding in the case of negative coefficients), plus
some carry and sign handling. The cost of this step is O(rp).

(2) Multiply in Z. Let Wy == U;Vj, € Zly] for j,k € {0,1}. Compute the four
integer products W x(2%7) = U;(2%P)V},(23F). The cost of this step is 4 M(3rp).

(3) Unpack coefficients. For each pair (j,k), the coefficients of W; ), € Z[y] are
bounded in absolute value by r(2P)? < 23771 so W, may be recovered from the
integer W, 1(2°P) in time O(rp). (In more detail: the constant term of W;; lies in
the interval (—23P~1,23P71) 50 it is easily read off the last 3p bits of W, ;,(257). After
stripping off this term, one proceeds to the linear term, and so on.) We then deduce
the polynomials Wy = (Wp,0—Wh,1) mod y" +1 and Wy = (Wy,1 +W1,0) mod y"+1
in time O(rp).

(4) Scale and round. Let cp .= (Wy)e +1(W1), € Z]i] for £ € {0,...,7—1}. Then
w = (22Pr)"Yeo + -+ + cro1y” ), so lce| < 22Pr for each £. In time O(rp) we
may compute w = p(w) = 277377 5 po((2P1)"e;)y? € Ao (each division by 2Pr
amounts to a bit-shift), and as usual e() = 27 ||p(w) — w| < V2 < 2. O

2.6. Linear and bilinear maps. Let A: V — W be an C-linear map between
finite-dimensional vector spaces V and W. We define the operator norm of A to be

lA]| == sup [[Avl|.

veVy
For example, the normalised DFT maps F,, defined in Section 2.4 all have norm
exactly 1.
Assume now that ||A| < 1. By a numerical approzimation for A we mean a
function A: V, — W, that is computed by some algorithm, typically via fixed-
point arithmetic. The error of the approximation is defined to be

e(A) == max 2° || Av — Av|| .
veV,
We write C(A) for the time required to compute Av from v (taking the maximum
over all possible inputs v € V).

Lemma 2.6 (Error propagatlon) Let A:V — W be a C-linear map such that
| Al <1, and let v € V. Let A: V, — W, be a numerical approzimation for A,
and let © € V,, be an approzimation for v. Then @ = Av € W, is an approzimation

for w = Av € W, such that () < e(A) + ().
Proof. We have
e(w) = 27 || AD — Av|| < 2P || AG — AB| + 27 || A5 — Av)|

e(A) + 27 ||l |7 — v]| < e(A) + (D). 0

NN

Lemma 2.6 yields the following estimate for compositions of linear maps.

Corollary 2.7 (Composition). Let A: U — V and B: V — W be C-linear maps
such that ||A|,||B|| < 1. Let A: U, — V, and B: Vo, — W, be numerical ap-

prozimations. Then C = BA: U, — W, is a numerical approzimation for C =
BA: U — W such that £(C) < £(B) + ¢(A).

Proof. For any u € U,, if we set v = Au € V, and & := Au € V,, then
2P || BAu — BAu|| = 27 || Bt — Bv|| < e(B) + () < e(B) + ¢(A). O
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The above definitions and results may be adapted to the case of a C-bilinear
map A: U x V — W as follows. We define

[All = sup [ A(u,0)].
uelU,,veEV,
If ||A|l < 1, then a numerical approzimation for A is a function A: Uy x Vo — W,
that is computed by some algorithm. The error of the approximation is
e(A) = max 2P| A(u,v) — A(u,v)]|,
uelUy,veVy,

and C(fl) denotes the time required to compute ./Zl(u, v) from w and v. Lemma 2.6
has the following analogue in the bilinear case.

Lemma 2.8 (Bilinear error propagation). Let A: U~><~V —>~W be a (C—bilm(far
map with || Al < 1, and let u € Us, v € Vo. Let A: Us x Vo = W, @ € Us,

v € Vo be approrimations. Then w = A(ﬂ,ﬁ) e W, is an approzimation for

w = A(u,v) € W, such that e(0) < e(A) + e(a) + £(0).
Proof. We have
e(w) < 2°(|A(@, ) — A(a, o)[| + || A(@ ) — Alu, 0)]| + [|A(w, ) — Alu, 0)]))
= 27(||A(a,9) — A(@,0)|| + [lA(@ — u, 0)[| + [ A(u, & —v)[))

< e(A) + 2 Al @ — ul| [[3]] + 27 LA [[ull |5 — o]
< e(A) +e(a) + (d). 0

The following application of Lemma 2.8 will frequently be useful.

Corollary 2.9. Let u,v € Co, and let w :=uv € Co. Given as input approzima-
tions 1,v € Co, in time O(p' %) we may compute an approzimation © € C, such
that e(w) < e(a) +(0) + 2.

Proof. Define a bilinear map A: C x C — C by A(u,v) := uv. Then [[A| <1, and
Lerrgma 2.4 yields an approximation A: C, x C, = C, such that £(A) < 2 and
C(A) = O(p'*%). Applying Lemma 2.8 to A and A yields the desired result. [

2.7. Tensor products. The following result is used to construct numerical ap-
proximations for tensor products of linear maps over a coefficient ring.

Lemma 2.10 (Tensor products). Let R be a coefficient ring of dimension r, and
letmy,...,mg,n1,...,ng = 1. Put M := [[, max(m;,n;), and assume that M > 2.
Forie{1,...,d}, let A;: R™ — R™ be an R-linear map with ||A;|| < 1, and let
A;: Rg” — RQI‘ be a numerical approrimation. Let A = ®; A;: ®; R™ — ®; R™
(note that automatically ||A| < 1).

Then we may construct a numerical approximation A: ®; RT - ®; R’O’ such

that e(A) < 3, e(A;) and

CA <M

%

Ci;;ll) + O(Mrplog M).

Proof. For i € {0,1,...,d}, let
Ul'=R"®.-.--Q R*%"'@QR"“"®@ R ® ... R™M,
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In particular, U = @; R™ and U? = ®; R*. The map A: U° — U? admits a
decomposition A = By --- By where B;: U"~! — U’ is given by

Bi=T,, @ QLn, , @A @Lpy\, @@L,

(here 7, denotes the identity map on R*). In other words, B; acts by applying
A; separately on each i-slice. Explicitly, for any v € U™ we have (Byu)j,.. j, =
(A;v);, where v € R™ is the vector defined by vy, = = Uy it ki1

We may define an approximation B;: U:~! — U! by mimicking the above formula
for B;; i.e., for u € U:~! we define (Biu);,.._j, == (Aw);,, where v € R™ is given
by v = Wy ooodim 1 Kodigtesda We may evaluate B; by first rearranging the data so
that each i-slice is stored contiguously (see Section 2.3), then applying A; to each
i-slice, and finally rearranging the data back into the correct order. We then define
A=By - Bi.

We clearly have £(B;) = £(A;) for all i, so by Corollary 2.7 we obtain e(A) <
S e(Bi) = 3, e(A;). The cost of the data rearrangement at stage i is

O(ng -+ mij—1mymigr - - mgrplogn;) + O(ny -+ - nj_1mm;qq - - - mgrplog m;)
= O(Mrp (logn; + logm;)),

so the total over all ¢ is O(Mrplog M) (here we have used the hypothesis that
M > 2). The total cost of the invocations of A; is

K3 1
2.8. Exponential functions. The next three results concern the approximation
of real and complex exponentials. We give only a sketch of the proofs, omitting
routine details of the error analysis. We use the fact that the constants 7w and log 2
may be approximated to within an error of 277 in time O(p'*?), and that for z
lying in any fixed bounded subset of C, we may approximate e* to within an error
of 277 in time O(p'*?) (in fact, in time O(M(p) log p); see [3, Ch. 6-7] or [5, Ch. 4]).

Lemma 2.11 (Complex exponentials). Let k > 1 and j be integers such that
0<j <k, and let w = e?™i/k ¢ C,. Given j and k as input, we may compute an
approzimation @ € Co such that () < 2 in time O(max(p, log k)'*°).

Proof. Temporarily increasing the working precision to p’ := p + C for a suitable
constant C' > 0, we first compute a p’-bit approximation for 27j/k € R in time
O(max(p, log k)'*?), then approximate exp(—2~" + 27ij/k) € C, in time O(p'*+?)
(the 277 term ensures that the approximation lies within in the unit circle). We
finally round towards zero to obtain an element of C, at the original precision p. O

Lemma 2.12 (Real exponentials, negative case). Let k > 1 and j > 0 be inte-
gers, and let w = ;‘”j/k € C,. Given j and k as input, we may compute an
approzimation w € Co such that () < 2 in time O(max(p,log(|j| + 1), log k)1+9%).

Proof. We first check whether j > kp in time O(max(log p,log(|j| + 1),log k) *?).
If so, then e~ ™/* < e~™ < 277 50 we may simply take w = 0.

Otherwise, we may assume that 0 < j/k < p. In this case, we first compute an
integer 7 > 0 such that 7 < Z5j/k < 74 2 in time O(max(logp log k)!*7) (note
that 7 = O(p)). Temporanly increasing the precision to p’ = p + [log, p| + C,
we now compute an approximation for z = 7log2 — wj/k € [*QIOg 2,0] in time
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O(max(p,log k)'+%) and then for e* = 27¢~™/F < 1 in time O(p'*?). We finally
divide by 27 and round towards zero to obtain an approximation for e=™/* in C,
at the original precision p. O

Lemma 2.13 (Real exponentials, positive case). Let k > 1, j > 0 and o > 0 be
integers, and assume that e™/k <29 gnd o < 2p. Let w = 2-9¢mi/k € Cy. Given
i, k and o as input, we may compute an approxrimation W € C,o such that e(w) <2
in time O(max(p, log k)'*7).

Proof. The hypotheses automatically ensure that j < kp. We now proceed along
similar lines to the proof of Lemma 2.12: we first compute an integer 7 > 0 near
o— @ j/k, and then at suitably increased precision we approximate successively
z = (1 —o0)log2 + mj/k and e* = 2779¢™/kand finally divide by 27 and round
towards zero to obtain an approximation for 2~?¢e™/* at precision p. O

3. COMPLEX TRANSFORMS FOR POWER-OF-TWO SIZES

Let p > 100 be the working precision as defined in Section 2. The goal of this sec-
tion is to construct an efficiently computable approximation for the d-dimensional
complex transform F,  ;,: ®;C' — ®@;C" in the special case that the ¢; are
powers of two. The following theorem is proved at the end of the section.

Theorem 3.1 (Power-of-two complex transforms). Let d > 2 and let ty,...,tq be
powers of two such thatty > --- > t1 > 2. LetT =1t ---tq and assume thatT < 2P.
Then we may construct a numerical approximation ftl,...,td3 ®; ((Eé — ®; CZ for
Fiy ... tq Such that 6(]:}17___@) < 8Tlog, T and

.....

AT
1) < - M(3tqp) + O(Tplog T + Tp'*+°).
d

Throughout this section we set
r = tg, Z = Clyl/(y" +1).

The basic idea of the proof of Theorem 3.1 is to use Bluestein’s method [2] to reduce
the DFT to the problem of computing a (d — 1)-dimensional cyclic convolution of
size t1 X - - - Xtg_1 over Z, and then to perform that convolution by taking advantage
of the synthetic roots of unity in %Z. The M(-) term in the complexity bound arises
from the pointwise multiplications in #. The O(TplogT) terms covers the cost
of the synthetic FFTs over %, and the O(Tp'*%) term covers various auxiliary
operations.

For the rest of this section, ®; Z% always means ®7_| Z*%, and ®; Ct always
means ®%_, C.

3.1. Transforms and convolutions over %. We begin with the one-dimensional
case. Recall that we have defined a synthetic transform G;: #* — %' for each
positive divisor ¢ of 2r, i.e., for t € {1,2,4,...,2r}.

Lemma 3.2 (FFT over %’2 For t € {1,2,4,...,2r}, we may construct a nu-
merical approximation Gy: XL — XL for Gy such that €(G;) < logyt and C(Gy) =
O(trplog2t).
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Proof. For the case t = 1, observe that G1: #Z — Z is the identity map, and admits
the trivial approximation Q1 > — %’ given by Qlu = u. This satisfies 6(91) =0
and C(gl) = O(rp).

Now let t € {2,4,...,2r}, and assume that Qt/g 7 %t/ has already been
constructed. Given as input u € ,%’o, we will use the well-known Cooley—Tukey
algorithm [7] to approximate Gyu € Z¢.

For any j € {0,...,¢t — 1}, observe that

—1 t_q
; R et
—2rjk/t —2rj(k+1)/t
y T]/uk"';ZZJ T3 ( 2)/uk+%
k=0 k=0
t1

= Z Y2/t uk+ (1) gy
t/2

S
W+

gtu Zy72rjk/t —

2 )

where we have used the fact that y” = —1. For £ € {0,..., £ — 1} this implies that
(Gru)ae = (Gij2v)e and (Gyu)aeq1 = (Gejow)e, where v, w € %5/2 are given by

Vg = %(uk—i—u,ﬁ%)7 wy, = éy‘zrk/t(uk—ukJr%), 0<k<t/2

We may therefore use the following algorithm.

(1) Butterflies. For k € {0,... ,% — 1}, we use Lemma 2.1 to compute approx-
imations Oy, W}, € %, for vy and wj, = 3 (up — Uy ) such that e(oy),e(wy,) < 1.
We then compute an approximation wy € s for wy, = y’QTk/tw;c; as y" = —1, this
amounts to cyclically permuting the coefficients of @), (and adjusting signs), and
clearly e(wy) = e(w},) < 1. The cost of this step is O(trp).

(2) Recurse. We compute G /20 and G /2w using the previously constructed
map G, /2, and interleave the results (at a further cost of O(trp)) to obtain the
output vector Gyu € #¢ defined by (Giu)ay = (Giy20)e and (Giu)aer1 = (Gyjow)e
for € {0,...,L —1}.

By Lemma 2.6 and induction we have

27 (|(Gew)ae — (Gew)acll = 2°1|(Grja®)e — (Gepv)el|
(Giy2) + £(0) <logy(t/2) + 1 =log, t.
A similar argument applies for (Gyu)s1. Therefore £(G,) < logyt. As for the

complexity, the above discussion shows that C(G;) < 2C(G, s2) + O(trp). This
immediately yields the bound C(G;) = O(trplogt) for t > 2. O

Combining Lemmas 3.2 and 2.10, we obtain the following approximation for the
multidimensional transform Gy, :, ,: @; Z' — ®; #".

Proposition 3.3 (Multivariate FFT over Z). Letty,...,tq andT be as in Theorem
3.1. We may construct a numerical approzimation Gy, .+, @ ®; Rt — @; AL for
Gttty Such that €(Gy, . 1, ) <logy T and C(G,,.. t, ) =O(TplogT).

Proof. We apply Lemma 2.10 (with d replaced by d — 1), taking R := Z, m; == t;,
n; = t;, A; == Gy, for i € {1,...,d — 1}. The quantity M defined in Lemma 2.10
is given by M = t1---t4—1 = T/r. Using the approximations G;, constructed in
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Lemma 3.2, we obtain

d—1
(gtlwv-»td 1 25
=1

d—1
logy t; = logy(T'/r) < log, T'
=1
and
d—1

C(Gtyootay) < %Z C(tgﬁ + O((T/ryrplog(T/r))

T
= Z O(rplog2t;) + O(TplogT) = O(TplogT). O

i=1

Next we will use the above result to approximate the normalised (d — 1)-dimen-
sional convolution map Mg: ®; Z% x ®; Bt — ®; ' defined by

1
Mg (u,v) = TU*, u,v € ®; B

Note that ||Mg| < 1; indeed, each component of uxv is a sum of ¢y ---t4_1 =T/r
terms of the form w;,, . j, Uk, . ks ., and we saw earlier that |lab|| < r|al| ||b]| for
all a,b € Z.

Proposition 3.4 (Convolution over #). Letty,...,tq and T be as in Theorem 3.1.
We may construct a numerical approzimation M% Qi Bl x @; Bt — @; R for
Mg such that e(Mg) < 3T log, T + 2T + 3 and

- AT
C(Mg) < —M(3rp) + O(Tplog T + Tp'™o).

Proof. We are given as input u,v € ®; 2. Let w = Mg(u,v) = Luxv € @; %%
be the exact (normalised) convolution. According to (2.1) we have
1

————uxv=(t1-ta-1)G5, . (Geytgy ) (G tay V)
t - tgy

Dividing both sides by r = t4, we obtain w = (T/r)w’ where

w' = gt*lauwtd—l (%(gtlanwtd—lu) : (gtlv-'ﬂtd*lv)) € ®; '%21

We use the following algorithm.

(1) Forward transforms. We invoke Proposition 3.3 to compute approximations
W, 0 € @ A for u' =Gy, 4, u € @AY and v = Gy, 4, v € ®; B, with
e(t'),e(0") < logy T. The cost of this step (and step (3) below) is O(TplogT).

(2) Pointwise multiplications. Let A: % x % — % be the normalised multipli-
cation map defined by A(a,b) = ab/r; then Lemma 2.5 yields an approximation
A: Ry x Ry — o such that e(A) < 2 (note that r = t4 < T/2 < 2P~ ). Applying
A to each component of @' and 7/, we obtain an approximation Z € ®; @f, for
z = 1u’ v’ € ®; ZL. This step requires time

T 4T
— (AM@rp) + O(rp)) = ——~ M(3rp) + O(Tp),
and by Lemma 2.8 we have

e(2) < e(A) +e(@) + (@) <2+1logy T +logy T = 2log, T + 2.
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(3) Inverse transform. We use Proposition 3.3 again to compute an approxima-
tion @' € @; Z for w' =G, | z€ ®;Z; by Lemma 2.6 we obtain

e(w') < 5(9}*1’.”,%_1) +¢e(2) <logy T + (2logy T +2) = 3logy T + 2.

(4) Scaling. Recall that w = (T/r)w’ and that |w| < 1. We may therefore apply
Lemma 2.2 (with ¢ :== T'/r < 2P) to compute an approximation 1w € ®; Z% such
that

e(w) < 2(T/r)e(w')+3 < T(3log, T +2) + 3
(here we have used the hypothesis that r = tq > 2). The cost of this scaling step is
O(Tp'*?). Finally we take Mz (u,v) := . O

3.2. Transforms and convolutions over C. We now transfer the results of the
previous section from &% to C. Consider the normalised d-dimensional convolution
map Mc: ®; Ct x ®; Cti — ®; Ct defined by

1
Mc(u,v) = U, u,v € ®; Ch.
As before we have |[Mc| <1

Proposition 3.5 (Convolution over C). Letty,...,tq and T be as in Theorem 3.1.

We may construct a numerical approzimation Mc: ®; Cli x ®; Cti — @, Cli for
M such that e(Mc) < 3T log, T + 2T + 15 and

C(Mc) < g M(3rp) + O(Tplog T + Tp**°).

Proof. Let ¢ := e™/" and consider the C-linear map S: C" — Z defined by

S(ugy -+ up_1) =g+ Cury + - + ¢ty

Then § is a isomorphism of rings between (C",x) and %; in fact, recalling that
(C", %) 2 Clz]/(z" — 1), we may regard S as the map sending x to Cy. Moreover, S
induces an isomorphism of rings

T: (®§i:1 Chi %) — (®§i:_11 R ).

Indeed, identifying these rings respectively as Clzy,...,2q]/(z}' — 1,..., 2% — 1)
and Clzy,...,2q_1,9]/(z —1,. x(tf o —1,y" + 1), the isomorphism 7 sends
w(xy, ..., Tg—1,2q) to u(xl,...,xd_l,Cy). Writing U = 7! for the inverse iso-

morphism, we obtain
Mc(u,v) =UMg(Tu, Tv)), u,v € ®; Ch.

Now we construct numerical approximations for the maps just introduced. We
may construct an approximation S: (CT — A, by first using Lemma 2.11 to compute
an approximation (] e C, for each G = = e™i/7 € C,, and then using Corol-
lary 2.9 to compute an approximation #; € C, for each product v; = (ju; € Co.
We obtain £((;) < 2 and then &(9;) < £({;) + 2 < 4. Hence £(S) < 4 and C(S) =
O(rp'*®). Then, applying S separately to the coefficient of each ]t J;Zf o,
we obtain an approximation 7: ®%L, Cl — @ %% such that 5(7’) < 4 and
(T = ((T/r)rp1+5) O(Tp1+5) The inverse is handled similarly; we obtain an
approximation U : ®@4=} %% — @¢_, C% such that e(U) < 4 and C(UU) = O(Tp'*?).
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Finally, given as input u,v € ®; C%, we define Mc(u,v) = U(Mz(Tu, Tv)).
Then Lemma 2.6, Lemma 2.8 and Proposition 3.4 together imply that

e(Mc) <e) +e(Mg) +e(T) +e(T) < (3Tlogy T+ 2T + 3) + 4+ 4 + 4,
and the estimate for C(Mc¢) follows immediately from Proposition 3.4. O

Finally we use Bluestein’s trick [2] to prove the main result of this section.

Proof of Theorem 3.1. We are given as input u € ®; @f, We wish to approximate
_____ t,u € ®; Cli| which is given explicitly by
1 t1—1 tq—1
Gpogs = 2 0 S e iy, 0 i<
E1=0  kq=0

For any j1,...,jq € Z set
(3.1) Qjy . = eﬂi(jf/t1+~~+j3/td) e C,.

The identity —2jk = (j — k)? — j2 — k? implies that

| ol tasl
(3.2) Ujryeda = Qa7 D DREEE N7 N P (S TS )

k1=0 kq=0

where ~ denotes complex conjugation. Moreover, we observe that a;, . ;, is periodic
in each j; with period t;, as emiUitt)*/ti — miii/ti (gmi)20itti — miii/ti (using the
fact that ¢; is even). Therefore, regarding (3.1) as defining a vector a € ®; Cli, we
may rewrite (3.2) in the form

v=2a-(gax(a-u)).

We now use the following algorithm.

(1) Compute a. Recalling that each ¢; divides r, we may write
T
Mjrseenda = ?

. ro.
Ajy,....5a = € ]12+"'+a]3 (mod 27‘).

1
Iterating over the tuples (ji,...,jq4) in lexicographical order, we may compute
Mj,....jo i amortised time O(logr) = O(p) per tuple (for example by precom-
puting a table of squares modulo 2r), and then use Lemma 2.11 to compute an
approximation @j, . ;, € Co such that e(a;,,;,) < 2 in time O(p'*?). We thus
obtain @ € ®; C% with (@) < 2 in time O(Tp'*?).

(2) Pre-multiply. We use Corollary 2.9 to compute an approximation b € ®; Cl
for b= @ - u with e(b) < £(@) + 2 < 4 in time O(Tp'*+?).

(3) Convolution. We use Proposition 3.5 to compute an approximation ¢ € ®; (@Q
for ¢ := Fa xb. This requires time (47/r) M(3rp) + O(TplogT + Tp'*°), and by
Lemma 2.8 we have

(&) < e(Mc) +e(a) +e(b) < 3Tlog, T + 2T + 21.
(4) Post-multiply. We invoke Corollary 2.9 again to compute an approximation
0 € ®; Cli for v = a - ¢ such that
e(0) <e(a) +e(e) +2 < 3Tlog, T+ 2T + 25

in time O(Tp'*™?). We have 2T +25 < 5Tlogy, T' (because T' > tity > 4), so
e(?) < 8T'log, T'. Finally we take Fy, . . ¢,u == 0. O

.....
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Remark 3.6. In the algorithm developed in this section, it is essential that the mul-
tidimensional complex transform be performed “all at once”. If instead we decom-
pose it into one-dimensional transforms in the usual way, and then use Bluestein’s
method to convert each of these to a one-dimensional convolution over %, we would
increase the number of multiplications in Z by a factor of O(d), leading to an ex-
traneous factor of O(d) on the right hand side of (1.3).

Remark 3.7. An alternative method for reducing multidimensional complex trans-
forms to synthetic transforms was described in [33]. Briefly, given as input u €
Cloy, .. 2q_1,y]/ (2 —1,... ,xtdd:f —1,y" + 1), assume that we wish to evaluate
each z; at the complex ¢;-th roots of unity, and y at the “odd” complex 2r-th roots
of unity (i.e., roots of y" 4+ 1). We first use (d — 1)-dimensional synthetic trans-
forms to compute the polynomials w;, i, , (y) = u(y? i/t .. y?ria-1/ta-1 gy €
Cly]/(y" + 1), for all 4, € {0,...,tx — 1}. It then suffices to compute the one-
dimensional complex DFT of each w;,, s, ,(y), which could be done for example
by Bluestein’s method.

4. GAUSSIAN RESAMPLING

Let p > 100 be the working precision as defined in Section 2. The aim of this
section is to show how to reduce the problem of approximating a multidimensional
complex transform Fs, . 5, ®; C* — ®; C%, for a given “source” size s X - - X 54,
to the problem of approximating another transform F, _ ,: ®; Ct — ®; C' for
a somewhat larger “target” size t; X --- X tq. (In Section 5 we will specialise to the
case that the s; are primes and the ¢; are powers of two.) The following theorem is
proved at the end of Section 4.3. It may be strengthened in various ways; see the
discussion in Section 4.4.

Theorem 4.1 (Gaussian resampling). Let d > 1, let s1,...,5q4 and t1,...,tq be
integers such that 2 < s; < t; < 2P and ged(s;,t;) =1, and let T ==t - -t4. Let «
be an integer in the interval 2 < a < p'/2. For each i, let 6; = ti/si — 1, and
assume that 0; > p/at.

Then there exist linear maps A: ®; C% — ®; Ct and B: ®; Ct — ®, C%, with
Al 18]l < 1, such that

]:51’~~~an = 278]‘}1’,,,,%./47 Y= 2do’.

Moreover, we may construct numerical approximations A: s @gi — Qs Cé and
B: ®;Cli — ®;CSi such that e(A),e(B) < dp? and

C(A),C(B) = 0(dTp** a + TplogT).

This theorem shows that to approximate a transform of size s; X - -+ X s4, one
may first apply A, then compute a transform of size t1 x - - - X tg, then apply B, and
finally multiply by 27. The dTp?/?*%a term in the complexity bound arises from
the numerical computations at the heart of the “Gaussian resampling” method.
The TplogT term covers the cost of various data rearrangements in the Turing
model (this term would not appear if we worked in the Boolean circuit model). In
the application in Section 5, the parameters will be chosen so that the first term is
negligible compared to the O(TplogT) cost of evaluating .7:}17___7%.
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r 0.5000 0.2280 0.0216 4.2e-4 1.7e-6 2.9e-9 1.7e-6 4.2e-4 0.0216 0.2280 17
0.3142 0.4795 0.1522 0.0100 1.3e-4 3.9e-7 8.9e-9 7.1e-6 0.0012 0.0428
0.0779 0.3982 0.4230 0.0934 0.0043 4.0e-5 8.1e-8 4.7e-8 2.6e-5 0.0032
0.0076 0.1305 0.4642 0.3432 0.0527 0.0017 1.1le-5 1.5e-8 2.3e-7 9.2e-5
2.9e-4 0.0169 0.2011 0.4977 0.2561 0.0274 6.0e-4 2.8e-6 3.5e-9 1.0e-6
4.4e-6 8.6e-4 0.0344 0.2849 0.4908 0.1757 0.0131 2.0e-4 6.5e-7 5.3e-9
2.7e-8 1.7e-5 0.0023 0.0644 0.3714 0.4452 0.1109 0.0057 6.1e-5 1.3e-7
2.7e-8 1.3e-7 6.1e-5 0.0057 0.1109 0.4452 0.3714 0.0644 0.0023 1.7e-5
4.4e-6 5.3e-9 6.5e-7 2.0e-4 0.0131 0.1757 0.4908 0.2849 0.0344 8.6e-4
2.9e-4 1.0e-6 3.5e-9 2.8e-6 6.0e-4 0.0274 0.2561 0.4977 0.2011 0.0169
0.0076 9.2e-5 2.3e-7 1.5e-8 1.1e-5 0.0017 0.0527 0.3432 0.4642 0.1305
0.0779 0.0032 2.6e-5 4.7e-8 8.1e-8 4.0e-5 0.0043 0.0934 0.4230 0.3982
0.3142 0.0428 0.0012 7.1e-6 8.9e-9 3.9e-7 1.3e-4 0.0100 0.1522 0.4795 |

r 1.0000 5.9e-10 1.2e-37 9.8e-84 2.6e-148  5.2e-231  2.6e-148 9.8e-84 1.2e-37 5.9e-10
3.4e-6 0.3227 1.0e-14 1.2e-46 5.3e-97 8.1e-166  1.6e-210  9.2e-132 1.8e-71 1.3e-29
1.4e-22 0.0021 0.0108 1.9e-20 1.3e-56 3.0e-111  2.5e-184  1.0e-190 3.3e-116 3.6e-60
7.6e-50 1.6e-16 0.1339 3.7e-5 3.8e-27 1.3e-67 1.8e-126  8.4e-204 T7.le-172  1.2e-101
4.7e-88 1.6e-40 2.0e-11 0.8819 1.3e-8 7.7e-35 1.5e-79 1.1e-142  2.8e-224  4.9e-154

3.6e-137 1.9e-75 3.6e-32 2.4e-7 0.6049 5.2e-13 1.6e-43 1.8e-92 7.2e-160  2.4e-217
3.3e-197  2.7e-121 8.1e-64 8.5e-25 3.2e-4 0.0432 2.0e-18 3.5e-53 2.2e-106  4.8e-178
3.3e-197  4.8e-178  2.2e-106 3.5e-53 2.0e-18 0.0432 3.2e-4 8.5e-25 8.1e-64 2.7e-121
3.6e-137  2.4e-217  7.2e-160 1.8e-92 1.6e-43 5.2e-13 0.6049 2.4e-7 3.6e-32 1.9e-75
4.7e-88 4.9e-154  2.8e-224  1.le-142 1.5e-79 7.7e-35 1.3e-8 0.8819 2.0e-11 1.6e-40
7.6e-50 1.2e-101 7.1e-172  8.4e-204  1.8e-126 1.3e-67 3.8e-27 3.7e-5 0.1339 1.6e-16
1.4e-22 3.6e-60 3.3e-116  1.0e-190  2.5e-184  3.0e-111 1.3e-56 1.9e-20 0.0108 0.0021
L  3.4e-6 1.3e-29 1.8e-71 9.2e-132  1.6e-210 8.1le-166 5.3e-97 1.2e-46 1.0e-14 0.3227

FIGURE 2. Matrices of S and T for s = 10, t = 13, o = 2. The
maximal entries in each column are shown in bold.

Throughout this section we use the notation
[x] = |z + %], () =2 — [z], x eR.

Thus [z] is the nearest integer to x, rounding upwards in case of a tie, and (z) is
1

the corresponding fractional part with —% < (z) < 2.
4.1. The resampling identity. Throughout Sections 4.1 and 4.2, let s and ¢t > s
be positive integers such that ged(s,t) =1, and let a € (0, 00).

Define “resampling maps” S: C* — C*! and 7: C* — C! by

-2 2/ k j\2
(Su)g = oflzefm s (5 -3) uj, ueC?® 0<k<t,
jez

(Tuj = 3 e PG-D%y, ueC, 0<k<t.
JEL

These sums certainly converge due to the rapid decay of the function e~*". Each
entry (Su)g and (T u)g is a weighted linear combination of wg, ..., us_1, with the
largest weightings given to those u; for which j/s is closest to k/¢ modulo 1. Figure 2
shows examples of the matrices of S and 7. They have relatively large entries near
the “diagonal” of slope t/s, and the entries decay rapidly away from the diagonal
according to a Gaussian law. The parameter a controls the rate of decay.

We also define permutation maps P,: C* — C® and P;: Ct — C! by

(Psuw)j = uy, ueC’ 0<j<s,
J J
(Pru)g == u—sk, weCl 0<k<t.

Then we have the following fundamental identity, which uses S and T to transform
Fs into Fy.
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Theorem 4.2 (Resampling identity). We have TP Fs = P JFiS. In other words,
the following diagram commutes:

Fs Ps
(O (O3 (O
S T
Fi Py
Ct Ct Ct

Proof. Given u € C*, define a smooth, 1-periodic function f,: R — C by
. o —2.2.2
ful@) =) ujglw 1),  gla)=e T 7
JEZ
It has an absolutely and uniformly convergent Fourier expansion
fulz) = Z fu(r)e%ima
reZ

where the Fourier coefficients are given by

1
fulr) = / e (2) da

1
= / Z uje” gz — 1) dx
0

jez
1s—1 ‘
= / Z Zuje*%”””g(x —q—1)dr
0 j=0gqez
s—1 00
- Zuj / e P g(x — 1) dx
j=0 -0
s—1 00
— Z uje—QTrirj/s / e—Qﬂirmg(]}) dr.
=0 -0
Using the well-known fact that the Fourier transform of g(x) on R is given by
o0 2ri 1 2_-—2, 2
/ e () dr = asT e TV Y y € R,
— 00

we obtain
2

fu(r) — qe~ s (Fstt), r € Z.

By definition (Su), = a1 f,(¢/t) for any ¢ € Z, so for any k € {0,...,t — 1} we
have

(Pt]-"tSu)k = (]-'tSu),sk

t—1
— o 14! Z e27risk:€/tfu(€/t)
£=0

t—1
_ a—lt—l Z 627risk£/t Z fu(T)eQﬂ'irﬁ/t
£=0

reL
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=a’ Z fu(r)

r=—sk mod t
2

Z _ -2 2
— e T S T (.FSU)T
r=—sk mod t
2_ -2 . 2
= E emmars  (ti—sk) (Fow)tj—sk
JEZ
_ 2,207 k\2
= e ETDN (P Fou);
JEZ

= (TPS]:Su)k O

Remark 4.3. Another interpretation of the above proof is that the measure f,(x) dz
is the convolution of the measures Z;;é ujdj/s and Y .z 9(x — j)dz on R/Z,
where d, means a unit mass concentrated at x. The key point is that the Fourier
transform maps convolution of measures to pointwise multiplication of their Fourier
coefficients.

We conclude this section with a straightforward bound for ||S||.
Lemma 4.4. We have ||S]| <1+ a~ 1.

Proof. For any u € C$ and k € {0,...,t — 1}, we have
[(Su)p| <o Ze_”MQSz(%_%)z =a ! Z I it DR Z G(n+7),

JEL JEZ JEZ
where 7 := (=£) € [-1, 1] and G(z) = e~ 7",
First suppose that 1 € [—3,0]. Then G(z) is increasing on (—oc,7) and decreas-

ing on (n+ 1,00), so

2 —1 o) 0o
/_n G(z)dz> Y Gn+j), /+1G(x)dm>ZG(n+j).

j=—o00 Jj=2

For the remaining interval (1,7 4 1), we observe that G(z) > G(n+ 1) for z €
(0,n+1) and G(z) > G(n) for x € (n,0); but we have additionally G(n) > G(n+1)
because || < 3 < [+ 1], so in fact G(x) > G(n+1) on the whole interval (1, 7+1).

This implies that f:H G(z)dx = G(n+ 1), and adding the three integrals yields

(o)
S Go+9) =G+ Y G+ <1+ [ Gyds=1+a,
JEZ J#0 -
A symmetrical argument yields the same bound for the case n € [0, ]. We conclude

that |(Su)x| < a ' (1+a) =1+ a1, and hence ||S|| < 1+~ L. O

4.2. Solving the system. We wish to use Theorem 4.2 to express Fy in terms
of F;. To do this, we must show how to solve a system of the form 7z = y. This
system is overdetermined, as t > s. For fixed «, it turns out that the system
is numerically unstable if t/s is too close to 1, or in other words, if the quantity
0 :==t/s — 1 1is too close to zero. On the other hand, we will show that imposing
the condition # > 1/a? is enough to ensure that the system becomes numerically
tractable, and in this case we may even construct an explicit left inverse for 7.
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9.6e-923 1.8e-9 9.5e-37 1.1e-83 4.4e-148 1.2e-229  4.4e-148 1.1e-83 9.5e-37 1.8e-9
3.4e-6 1.7e-880 7.9e-14 1.4e-46 8.8e-97 1.8e-164  2.7e-210  1.0e-131 1.3e-70 4.1e-29
7.6e-50 5.2e-16 2.7e-866 4.3e-5 6.3e-27 3.2e-66 3.0e-126  9.5e-204  5.3e-171 3.8e-101
4.7e-88 5.0e-40 1.5e-10 7.4e-909 2.2e-8 1.7e-33 2.5e-79 1.2e-142  2.1e-223 1.5e-153
3.6e-137 5.9e-75 2.7e-31 2.8e-7 1.1e-894 1.2e-11 2.7e-43 2.0e-92 5.3e-159  7.6e-217
3.3e-197  1.5e-177 1.6e-105 4.0e-53 3.4e-18 4.2e-852 5.3e-4 9.7e-25 6.0e-63 8.6e-121
3.6e-137  7.6e-217  5.3e-159 2.0e-92 2.7e-43 1.2e-11 1.1e-894 2.8e-7 2.7e-31 5.9e-75
4.7e-88 1.5e-153  2.1e-223 1.2e-142 2.5e-79 1.7e-33 2.2e-8 7.4e-909 1.5e-10 5.0e-40
7.6e-50 3.8e-101 5.3e-171 9.5e-204  3.0e-126 3.2e-66 6.3e-27 4.3e-5 2.7e-866 5.2e-16
3.4e-6 4.1e-29 1.3e-70 1.0e-131 2.7e-210 1.8e-164 8.8e-97 1.4e-46 7.9e-14 1.7e-880

FI1GURE 3. Matrix of € for s =10, t =13, a = 2.

The function ¢ — [t¢/s] maps {0,...,s — 1} (injectively) into {0,...,t — 1}, so
we may define a map C: Ct — C® by the formula
(Cu)y = U[te/s]s u € (Ct, 0<l<s.
We then set
T =CT:C° — C°.
Note that the matrix of 7' is obtained by deleting ¢t — s rows from the matrix of T.

If we can show that 7 is invertible, then a left inverse for T is given by (77)~'C.
The entries of 7'u are given explicitly by

(T'w)e = (Tw)peyg = 3 e EGE-D7y, = 37 et & [4)7,
JEL jez
= Z et (B0
heZ
where
fom (4= (), tez

Observe that 8y depends only on ¢ modulo s, and that |5,| < % for all £.

We normalise 7" as follows. Let D: C* — C® be the diagonal map defined by
(Du)¢ == dyug, where dy := e™* B¢ for ¢ € 7. Since Bf < % we have 1 < dy < e””‘2/4,
and in particular

(4.1) DIl < ™ /4.
Define
N =T'D: C* — C®.
In other words, the matrix of A is obtained by multiplying the /-th column of the
matrix of 77 by dy. Explicitly,
—ra?(th 2 —ra?((th 2 ;52
(NU)E = Ze (55++8e) d@—i—huﬁ-‘rh — Ze (B2 +Be) ﬁe+h)u£+h.
hezZ hEZ
In this last expression, the h = 0 term is simply u,. Therefore, setting £ .= N — T,
where Z: C* — C? is the identity map, we have
(Eu)e = Z 6_”0‘2((%“32)2_53+’L)ug+h, ueC’ 0</l<s.
h#0

An example of the matrix of £ is shown in Figure 3.
The following estimate is crucial for establishing left-invertibility of 7 and for
obtaining a fast algorithm for solving the system Tz = y.
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Lemma 4.5. Assume that o?0 > 1. Then
||| < 2.01 - e ™02 < 9700,
Proof. For any u € Cg, the above formula for (£u), implies that
(Eu)e < S e (8 B g <<,
h#£0
Since |B¢| < 3 < £, we have |t 4 By| > \%| 1Be] > L(|h| — 1). For h # 0 we

1
2
have [h| — 3 > £ >0, so

(2 + By)2 = B2,y > (t/5)2(Ih) — 3)° = 1
= (1+0)(|h| - )? 1
> (14260)(|h] — 1)> -1

= (|h| = 5)* — 5 +20(|n| - 3)?

> 20(|h| — 3)%.
Therefore

[(Eu)| < Ze—2m2a(|h\—%)2 _ 2(w1/4 + w4 4w/ )
h#0

where w = e=27*%  Since a2 > 1 we have w < e 2™ < 0.002, so
I(Ew)e| < 2041+ w? + w4+ +) < 2.01 - w'/* = 2.01 - e ™ 0/2 < 97070,

where we have used the fact that 2.01 - e~™/2 < 272 for all z > 1. O

Under the hypothesis of Lemma 4.5, we see that [|£]| < 1, so A is invertible,
with inverse given by N™!' =T — £ 4+ €2 —--.. Moreover, DN ~!C is the promised

left inverse for T, as
(4.2) (DN7IO)T =D(T'D)'T' =1

4.3. Proof of the theorem. We may now prove the following special case of
Theorem 4.1.

Proposition 4.6 (Gaussian resampling in one dimension). Let s and t be integers
such that 2 < s < t < 2P and ged(s,t) = 1. Let a be an integer in the interval
2<a<p/? Let®:=t/s—1>0, and assume that 0 > p/a*. Then:
(i) There exist linear maps A: C° — C! and B: C* — C*® with || A, ||B|| < 1
such that Fy = 229" BF, A.
(ii) We may construct numemcal approzimations A: C2 — C. and B: Ct — C3
such that e(A),e(B) < p* and C(A), C(B) = O(tp 1p2+0g, +tplogt).
Proof of (i). We apply the results of Sections 4.1-4.2 with the given s, ¢ and «.
Lemma 4.4 implies that ||S|| < 2. The hypotheses a < p'/? and 6 > p/a* imply
that a?0 > 1, so Lemma 4.5 yields ||£] < 2.01-e7™/2 < 0.42. In particular,
N =T+ € is invertible and [N < 14042+ (0.42)% + - < I.
Let J := N !, and define normalised maps
=S5/2, j’ =J/2, D =D/2?"2
Then ||| < 3 < 1and ||| < I < 1. By (4.1) we have || D] < e™/4 < 21-140% <
220°=2 ag 1. 141’ < 2z — 2 for all x = 4; hence also ||D'|| < 1.
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Now define
A=S, B=P 'DJCP;.
It is clear that ||P]| = [|P7Y = |IC]l = 1, so ||A]| < 1 and ||B|| < 1. Moreover, by
(4.2) and Theorem 4.2 we have

220" BF, A = P22 2D ) (27" )C P Fy (2S')

"
(DN TIC) (P F.S)
TUDNTIC)N(TPFs) =P P Fs = Fe. 0

We break up the proof of (ii) into several lemmas. We begin with a straightfor-
ward algorithm for approximating D’ (Lemma 4.7). Next we give algorithms for
approximating &’ = §/2 and £ (Lemmas 4.8 and 4.10); these amount to merely
evaluating sufficiently many terms of the defining series, which converge quickly
thanks to the rapid decay of the Gaussian weights. We then give an algorithm for
approximating J' = N 71 /2, using the series N1 = Z—-£+E?—- - (Lemma 4.11);
here the fast convergence is guaranteed by the bound on ||£|| given in Lemma 4.5.

Lemma 4.7. We may construct a numerical approzimation D': C; — @f, for D’
such that e(D') < 4 and C(D') = O(tp'*?).

Proof. We are given as input u € Cg. For each ¢ € {0,...,s — 1}, by definition
(D'u)¢ = djyu; where

d% p———_— 22 /22a —2 =d, /22a -2 < 1.

We may rewrite the rational part of the exponent of dj as o?37 = « (M> = a’ky/s?
for some integer k;. As a, s, t and £ are all integers with O(p) bits (here we have used
the hypotheses s,t < 2P and o < p1/2), we may compute o?k, and s2 in O(p'*?)
bit operations. Feeding this as input to Lemma 2.13 (with o := 2a? — 2 < 2p), we
obtain an approximation d, € C, such that e(d}) < 2 in time O(p'*?). We then
use Corollary 2.9 to compute an approximation Z, € C, for z = djug such that
(%) < e(d}) + 2 < 4 in time O(p'*?). Finally we set (D'u), == %. The total cost
over all £ is O(sp'*t°) = O(tp'*+?). O

Lemma 4.8. We may construct a numerical approzimation S’ (:g — Cf) for &

such that £(S') < 18p and C(S") = O(tp*/*Ta).
Proof. We are given as input u € @g. For each £ = 0,...,t — 1 in turn, we
approximate (S'u); as follows. By definition
1 —20. sk
(S'u) = (38u), = Z iofle*m TGy

JEZ
Let m := [p'/?]a and consider the truncated sum

1 2 s
(4.3) Ty = Z §a_1e_m 2(]_%)2%

lj— 2 l<m

There are at most 2m terms in this sum. Since |lul| < 1 and « > 2 we have

1
/ 1 —1,-ma=2(j—2) 1 —ma?(j—k)?
(Sw)e = Tel < > 3¢ fusl < 5 o £)?,

li—=E1=m
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-2
Let w:=e"" < 1; then

(wm2 + w(m+1)2 + w(m+2)2 N )

wm2(1 + w2m+1 4 w47n+4 N )

[(S"u)i — T| <

NI= N

Since a < p'/? we have
w™ = 67“(’”1/2]/& < 67’”’1/2/0‘ < e T <0.05,
so certainly 1 4+ w?™+! + 4m+4 4 ... < 2. We conclude that
(8w, — Ti| < w™ < e P Lo < 0P,
Now we explain how to compute a suitable fixed-point approximation for Tj. Let
B = 3a~', and for each j appearing in (4.3), let z; := e~ (i=sk/t)® y; = Baj,

zj = yjuy, so that Ty =3, z;. We first compute B = p(B) =2"Ppe(2°" 1 /a) € C,

b

steps. As s, t, j, k and « are all integers with O(p) bits, we may use Lemma 2.12
to compute an approximation #; € C, such that £(%;) < 2 in time O(p'*?). We
then use Corollary 2.9 to compute an approximation g; € C, such that e(g;) <
£(B) + &(#;) + 2 < 6, and again to obtain Z; € C, such that £(3;) < (§;) +2 < 8,
in time O(p'*?). Finally, we form the sum Ty = Zj Z;; that is, writing Z; = 27Pa,

in time O(p'*?); certainly £(8) < 2. Then for each j we perform the following

for integers a;, we compute ), a; and set Ty =277 ; @j. Observe that

P Ty, — (S'u)p| < 2P| Ty — Ti| + 2P | Th — (S"u)4]
<2715 -z +1<(2m) - 8+1=16m+1.

As m < [pt/?]p*/? < p+p'/? and p > 100, we find that
2P | Ty, — (S'u)x| < 16p + 16p*/2 +1 < 18p.
Therefore
|Th| < |Th — (S"u)] + |(S"u)r| < 18p-27P + || 8| |Jul < 10726 + 3.1<1,

confirming that Ty, € C,. Defining (8'u)j, = T}, we have 27 |(S'u), — (S'u)x| < 18p
as desired. The cost of the above procedure for each k is O(mp'*+?) = O(p/?+9a),
so the total over all k is O(tp?/?9q). |

Remark 4.9. The algorithm in the proof of Lemma 4.8 amounts to multiplying a
vector by a matrix of the type shown in Figure 2, including only those entries that
are numerically significant, i.e., a strip of width roughly 2m around the diagonal.
To avoid excessive tape movements in the Turing model, one must arrange the data
so that it is not necessary to “jump” between ug and us_; when the index j wraps
around modulo s. One simple way to achieve this is to perform a preprocessing step
that generates the extended array ©—_q,, U—ym41, - - -, Ust+m; then the main algorithm
operates on this array, working from left to right, with a sliding window of width 2m.
Similar remarks apply to the proof of Lemma 4.10 below.
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Lemma 4.10. We may construct a numerical approzimation E:Cs — C¢ for €
such that €(€) < p and C(E) = O(tp>/*F0a™1).

Proof. The argument is similar to the proof of Lemma 4.8. Given as input u € @i,

for each £ =0,...,s — 1 we approximate (Eu), as follows. By definition
(gu)f _ Z e—ﬂaz((%'i‘ﬁz)z—ﬁirh)u@rh.
h#0

As in the proof of Lemma 4.5, for h # 0 we have
(% + Be)? = Bien > (t/5)%(Ih] = 3)% — 3
> (Ihl = 3)* = § = [ (k] = 1) = (|h] = 1)%
Let m = [(p/4a?)'/?] = [p'/?/2a] > 1, and consider the truncated sum

(4.4) Ty = Z e (B =By,
h#0, [h|<m

This sum has exactly 2m terms. As ||ul| < 1 we have

(Eu)e — Ty < Z e (4B =B24n) |y p| < Z e’ (|h|=1)*
|h|>m |h|>m

Let w = e~ <e ™™ < 107%; then w™ < 107° and
(Eu)e — Ty < 2(w™ 4 wm+D* popm+2® 4oy
- me2(1 M gt
< 3,wm2 < Se—waz(z)/4@2) — 3¢ ™P/4 3. 97D,

Now we explain how to approximate Ty. For each h appearing in (4.4), let
xTp = e~ (2 +80)°~B711) and Zp, = TpUpyh, s0 that Tp = >, z,. As in the proof
of Lemma 4.8, we may use Lemma 2.12 to compute an approximation Z; € Co such
that e(#5) < 2 in time O(p'*%). Using Corollary 2.9, we then compute Z, € C,
such that £(2,) < e(#4) 4+ 2 < 4. Finally we set T; == 3, Z,. We have

2P |Tg — (Su)g| < 2P |Tg — Tgl + 2P |Tg — (Su)g|
<(Xn2P |2 —zn])+3<(2m)-4+3=8m+3.

Asm < %pl/Q + 1 and p > 100, we find that
2 [Ty — (Eu)e| < 2pM% +11 < 1p.
Therefore
ITe] < |To = (Ew)el + |(Euel < 5p- 277 + €] Jull <107 + 5-1 < 1,

so we may define (éu)g .= Ty, € Co. The cost of the above procedure for each ¢ is
O(mp**+?). The hypothesis o < p/? implies that m < %plma_l +1=0(p"?a™1),
so the total cost over all £ is O(tp*/?+oa~1), O
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Lemma 4.1}. We may constﬁuct a numerical approximation T @f) — Cg for T’
such that e(J') < %pz and C(J') = O(tp3/?+3q).

Proof. We are given as input v € C5. Let v := u/2 € C?, and define v := &iv €
Cs for j > 0 (recall that ||€]| < 2% < 1 by Lemma 4.5). We wish to approximate
Ju=WN"1u=N"Tv=v—-Ev+E— =0 —pM® 4@ _

Let n == [p/a?0] = [ps/a (t —s)] = 1. We compute a sequence of approxima-
tions 5(©), ..., 51 € C¢ as follows. First set 90 = p(v(o)) = 27Ppo(2P~tu) €
Cs, so that 5( ) < 2. Then compute in sequence #9) = £5U-1 e C¢ for
j=1,...,n—1, using Lemma 4.10. We claim that £(51)) < 2p for each j. This is
clear for 7 = 0, and for 7 > 1 it follows by induction as

< 2P ||E0UD — g0 4 27 ||E5UD — gy
<)+ €)@V ) < ip+ 5 3p=3p.
Finally, define J'u := 3@ — ) 4 ... £ 5= Then we have

5(5(1)) — 9P Hf)(j) — U(j)”

n—1 n
2P || €
2=l < 32100 o) +20 3 [0 < dpt o L
Jj=0 j=n

Observe that 2(1 — ||€]) > 1 and [|€]|™ < 27" < 27P; also, as a6 > 1, we have
n < p. Thus 5
2| T'u— Tl < 2p® +1 < 3p?
This also shows that J'u € (éf,, as
1T ull < T ull + 117 w = T'ull < 1T flull + 3p* - 277 < £+ 1410720 < 1.

In the algorithm above, the bulk of the work consists of n invocations of €. The
hypothesis 6 > p/a* implies that
n < NS To + 1 Oé2 + 1,
so the total cost is O(tnp/2t0a~1) = O(tp3/?Ta). O

Now we may complete the proof of Proposition 4.6.

Proof of Proposition 4.6(ii). For A we simply take A := &’ where &' is as described
in Lemma 4.8; then 5(/1) < 18p < p?, and C(A) O(tp 3/2+9 ).

For B we take B := P 1p g/ CPt, where D’ and J' are as described in Lemmas
4.7 and 4.11, and where C: C, — C2, P;1: C2 — C2 and P;: C, — C are the
maps performing the obvious data rearrangements corresponding to C, P; ! and
P, namely

(éu)e = Ulte/s]s u e @f,, 0<l<s,
(75 ! ) = U(t—1 mod s)j> ue@ia 0<y<s,
(Ptu)k = U—sk, uG((N:Z, 0<k<t.

These do not perform any arithmetic in C, so E(é) = 5(75;1) = ¢(P;) = 0. By
Corollary 2.7 we obtain e(B) < e(D’') +&(J') < 4 + 3p? < p?.

As for the complexity, first observe that C simply copies its 1nput in order,
skipping t — s unwanted entries, so C(C) = O(tp). To compute P 'u for u € C2,
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we use a “label-and-sort” algorithm: we first construct the list of ordered pairs
(tj mod s,u;) for j = 0,...,s — 1 in time O(tp) (each label occupies O(p) bits as
s < 2P), then sort the list by the first entry using merge sort in time O(tplogt) [30],
and finally extract the second entries to obtain the desired output in time O(tp).
Thus C(P; 1) = O(tplogt), and similarly C(P;) = O(tplogt). Altogether we have

C(B) = C(D') + C(J') + O(tplogt) = O(tp'*° + tp3/>+°a + tplog t). O
Finally we show how to deduce the general case from the one-dimensional case.

Proof of Theorem 4.1. Let s1,...,s4 and ty,...,tq be as in the statement of the
theorem. Applying Proposition 4.6 for each i, we obtain maps A;: C* — Cb
and B;: C — C* with |4, [Bi]l < 1 such that F,, = 22°°B,F, A;, and ap-
proximations A;: C5 — Cl and B;: Cti — C# such that e(A;),e(B;) < p? and
C(A;), C(B;y) = O(t;p*/*T0a + tplogt;).
Now observe that
Forroisa = @i Fop = 229 (2: B)(@: Fo, ) (@1 Ai) = 229" BF,, 1, A,

where A = ®; 4;: ®;C% — ®;Ct and B := ®; B;: ®; Ct — ®;C%. Applying
Lemma 2.10 (Wlth R=C,r =1 m; == s;, n; = t;), we may construct an
approximation A: ®; C3 — ®; C4 such that e(A) < 3, e (.A ) < dp?. Moreover,
let M be as in Lemma 2.10; then M =[], max(s;,t;) =t;---tq =T, so

TZ

< TZ @) p3/2+5a +plogt;) + O(TplogT)

= 0dTp** a+ TplogT).

)

We may similarly construct an approximation B satisfying exactly the same error
and cost bounds, and this completes the proof. O

4.4. Further remarks. Our presentation of the Gaussian resampling technique
has been optimised in favour of giving the simplest possible proof of the main
M(n) = O(nlogn) bound. In this section we outline several ways in which these
results may be improved and generalised, with an eye towards practical applications.

4.4.1. Minor technical issues. In our presentation we insisted that a be an integer
and that a > 2. Neither of these restrictions are essential; they were made for
technical reasons to simplify certain proofs.

Similarly, the assumption ged(s,t) = 1 is not necessary. If g := ged(s,t) > 1,
then one can prove a variant of Theorem 4.1 in which the system corresponding
to Ta = y breaks up into g pieces that may be solved independently. In fact, the
problem becomes slightly easier from a computational point of view.

4.4.2. Faster system solving. The iterative method used in Lemma 4.11 to approx-
imate J = N'~! (i.e., to solve the system 7Tz = y) has complexity O(tp®/?+9 /a?0).
To ensure that this step does not dominate the O(tp®/ 2+5a) complexity of approx-
imating S (Lemma 4.8), we were compelled to introduce the hypothesis § > p/a*.
On the other hand, to make the target DFT of length ¢ as cheap as possible, it
is desirable for 6 to be as close to zero as possible. Together, these considerations
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imply that we cannot take o smaller than about p'/4. (Indeed, in Section 5, for
fixed d, we do take a = ©(p'/*) for this very reason.) For the choice a@ = O(p'/4),
the overall complexity in Proposition 4.6 is O(tp”/**?).

A better complexity bound may be obtained by precomputing an LU (alterna-
tively, Cholesky) decomposition for A, and then solving the system directly. The
cost of the precomputation is O(tp?>*°/a?) (assuming classical matrix arithmetic),
and then the cost of each application of J becomes O(tp*/?+9 /o). This allows us
to relax the condition § > p/a* to merely 6§ > 1/a?. Taking a = ©(1), the overall
complexity in Proposition 4.6 (discounting the precomputation) falls to O(tp®/>+9).
We did not use this method in our presentation because the error analysis is con-
siderably more intricate than for the iterative method.

After making this modification, it would be interesting to investigate whether
this method is competitive for practical computations of complex DFT's of length s
when s is a large prime. One would choose a smooth transform length ¢ somewhat
larger than s, say 1.25s < t < 1.5s, and use the algorithm to reduce the desired
DFT of length s to a DFT of length ¢; the latter could be handled via existing
software libraries implementing the Cooley—Tukey algorithm. For large enough s,
perhaps around 229 or 230 we expect that the invocations of S and J would be
quite cheap compared to the FFT of length ¢. Indeed, S can be computed in a
single pass over the input vector, and J in two passes (one for each of the L and U
matrices), so they have excellent locality. It is conceivable that a highly optimised
implementation could outperform existing software libraries, which handle trans-
forms of prime length by techniques such as Rader’s algorithm [37]. Such techniques
introduce a large constant factor overhead that does not arise in the method just
sketched.

We also mention that it may be of interest to replace the Gaussian in the defini-
tion of S by some other smooth function g(x), and accordingly replace the Gaussian
in the definition of T by its Fourier transform §(y). The main requirement is that
both of these functions should be strongly localised around zero. Different choices
for g(z) may lead to various tradeoffs between numerical accuracy and computa-
tional complexity.

4.4.3. Comparison with the Dutt—Rokhlin method. There is an enormous literature
on “non-uniform FFTS” (sometimes called “non-equispaced FFTs”), going back to
the seminal paper of Dutt and Rokhlin [11]. They consider transforms of the type

t—1
(4.5) v =y Ty, 0<j <t
k=0

The ordinary “uniform” DFT may be regarded as the special case where wy = k
and y; = j/t, but the Dutt—Rokhlin algorithms may be applied in cases where
the frequencies wy, are not necessarily integers, and/or the sample points y; are
not necessarily integer multiples of 1/¢t. In these cases the algorithms reduce the
problem to an ordinary FFT of length ¢ (or in some variants, a small multiple of ¢).
The complexity, counting floating-point operations, is O(tlogt+tp), where p is the
desired precision in bits.

If we now take instead wy, == k and y; = j/s, where s is the “source” transform
length, we see that (4.5) is exactly a DFT of length s (apart from some inconse-
quential zero-padding), so the Dutt—Rokhlin algorithms may be used to compute a
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DFT of length s by means of an FFT of length ¢. Inspection of their algorithms in
this case reveals them to be essentially equivalent to our method in the special case
that o = ©(p'/?).

For example, consider [11, Algorithm 2], which corresponds roughly to a “trans-
posed” version of our algorithm. Step 3 of that algorithm is analogous to approx-
imating S (see Lemma 4.8). For the choice @ = ©(p'/?), the complexity for this
step is O(tp?>*T?) bit operations, corresponding to the O(tp) term in their complex-
ity bound. Step 2 corresponds to our F;, and yields the O(tlogt) term. The most
interesting point of comparison is Step 1, which corresponds roughly to solving the
system 7x = y. The choice a = @(pl/ 2) implies that this system is essentially diag-
onal, i.e., the off-diagonal entries of 7 decay so rapidly that for numerical purposes
they may be discarded. Solving the system is therefore trivial: their Step 1 consists
of simply dividing each coefficient by the corresponding diagonal entry of 7 (in the
literature these are often called “scale factors”). This step contributes only O(t)
floating-point operations.

The reason that Dutt and Rokhlin are (in effect) unable to take « smaller than
about p'/? is essentially due to the approximation error committed when they
truncate the Gaussian, for example in [11, Theorem 2.7]. Our Theorem 4.1 may
be viewed as an “exact” replacement for that theorem. Rather than truncate the
Gaussian, we take into account the effect of the Gaussian tail, which manifests as
the off-diagonal entries of our 7 matrix. For a considerably smaller than p'/2,
these entries are numerically significant and cannot be ignored.

In our algorithm, assuming that we use the LU decomposition method mentioned
in Section 4.4.2, as « decreases from O(p'/?) to ©(1) we see that the complexity
of approximating S decreases from O(tp) to O(tp'/?) floating-point operations,
and the complexity of approximating J increases from O(t) to O(tp'/?). When
a = (1) they are balanced, and the overall complexity drops to O(tlogt + tp'/?);
the last term improves on the Dutt-Rokhlin bound by a factor of p'/2. Note
that the Dutt—Rokhlin bound is not strong enough for our application to integer
multiplication; using their bound, the error term in Proposition 5.2 would grow to
O(n(logn)'*?) which is unacceptably large.

Of course, our discussion has only considered the case corresponding to the DFT
of length s, i.e., the choice y; := j/s. An interesting question is whether the bound
O(tlogt + tpt/ 2) can be proved for the general non-equispaced case, and if so,
whether this method outperforms the Dutt—Rokhlin algorithm in practice.

5. THE MAIN ALGORITHM

In this section we present the main integer multiplication algorithm. We actually
give a family of algorithms, parameterised by a dimension parameter d > 2. Let

12
ng = 24" > 2409

and suppose that we wish to multiply integers with n bits. For n < ng, we may
use any convenient base-case multiplication algorithm, such as the classical O(n?)
algorithm. For m > ng we will describe a recursive algorithm that reduces the
problem to a collection of multiplication problems of size roughly n'/¢. We will
show that this algorithm achieves M(n) = O(nlogn), provided that d > 1729.

5.1. Parameter selection. Henceforth we assume that n > ng. We first discuss
the computation of several parameters depending on n that will be needed later.
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Let
b= [logyn] > d'? > 4096
be the “chunk size”, and let the working precision be
p = 6b = 6[logy n] > 6d*% > 24576 > 100.
Define
o = [(12d%p)V/47.
Clearly o > 2, and as d < b2 and b > 4096, we also have

(5.1) o < [12V/47/24] <1.87-b7/% 11 < 267/%4 < pt/2,
As in Theorem 4.1, set
(5.2) v = 2da? < 20112 4p7/12 = gp%/3,

Let T be the unique power of two lying in the interval
(5.3) dn/b < T < 8n/b,

and let r be the unique power of two in the interval
(5.4) TV L < 2TY4,

We certainly have b < 4n'/2, so

(5.5) r > (4n/b)Yd > nt/ > 24"

We now construct a factorisation 7' = ¢; - - - t4 satisfying the hypotheses of The-
orem 3.1. Let d’ = logy(r?/T). As T < r? < 29T we have 1 < r¢/T < 2¢ and
hence 0 < d’ < d. Define

ti,...,tg = g, tar 41y stg =T
Then ty > --- >t > 2 and
byt = (r/2)rd=d =pdj2d =T
Also
T <8n/b<n<2 <2P,

so the hypotheses of Theorem 3.1 are indeed satisfied. The parameters b, p, «, 7,
T, r and t,...,tq may all be computed in time (logn)°™).

Our next task is to choose distinct primes si,...,s4 that are slightly smaller
than the corresponding t¢1,...,t3. In a moment we will use Theorem 4.1 to reduce
a transform of size s1 X - - - X 84 to a transform of size t; X - - - X tg; to avoid excessive
data expansion in this reduction, we must ensure that the ratio t; ---t4/s1 -+ sq is
not too large. On the other hand, to satisfy the requirements of the theorem, we
must also ensure that the individual ratios ¢;/s; are not too close to 1. We will

achieve this by means of the following result.

Lemma 5.1. Let n € (0,1) and let x > €*/". Then there are at least inz/log
primes q in the interval (1 —2n)x < g < (1 —n)x.

Proof. Let 9(y) == }_ <, log g (sum taken over primes) denote the usual Chebyshev
function. According to [38, Thm. 4], for all y > 563 we have

oy y
2logy 2logy’

y <d(y) <y+
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As the function y/logy is increasing for y > 563, we see that

X

<Iy) <y+ 563 <y < .

Y

~ 2logx 2logz’

Applying this result for yo :== (1 — 2n)x > 2/2 > €8/2 > 563, and then again for
y1 = (1 —n)x > 3x/4 > 563, we obtain

T T T T nx
9 -9 >y — — — Yo — = _—=
(v1) (vo) > 1 2log x Yo 2logx " log x " 2/n 2
and hence
1 ) -9
R S logg = (1) —9(o) _ 0
log x log x 2log x
Yo<g<sy1 Yo<g<y1
Let us apply Lemma 5.1 with
1 < 1
T4 S8

and x := r/2, noting that (5.5) implies that /2 > 2¢"°=1 > e84 = ¢2/7_ We find
that there are at least
1 r/2 1 1 24" 24"

8d log(r/2) ~ 16d logr =~ 16d log(24"°)  (16log2)d'!

primes ¢ in the interval

r r
1-2n)=-<qg<(l—7m)=.
(I-2n)5 <g¢<(-n)3

We may find d’ such primes s1, ..., sq¢ in time 7t°(1) = o(n). Applying Lemma 5.1

again, with the same 7 but now with z := r > /", we find that there are at least
d > d — d’' primes ¢ in the interval

(I-2n)r<g<(l—n)r.

Again, we may find d — d’ such primes sg:41,...,8q in time o(n). These two collec-
tions of primes are disjoint, as

r r 3r
l—-n-<-<—<1-2n)r.
A-mg<g<ps-2nr
In summary, we have found d distinct primes s1,...,sq such that

(1_2n)t1<81<(1_n)t15 ZE{l,,d}
Setting S := s1---sq < T, we see that
S J 1\ 1
as (1 — )¢ >1—dx for all z € (0,1).

5.2. DFTs and convolutions for coprime sizes. The following result com-
bines Theorems 3.1 and 4.1 to obtain an approximation for the complex transform
Forrsa: ®C% — ®;C%. Recall that the working precision was chosen to be
p = 6b = 6[log, n].
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Proposition 5.2. We may construct a numerical approrimation ﬁsl,...,sd D Q; @Zi —
®; Csi for Fs, . s, such that e(Fs,.  s,) <275Tlogy, T and

4T
C(Fsy,.sq) < S M(3rp) + O(nlogn).

Proof. Let us verify the hypotheses of Theorem 4.1. We have already seen that
2 < s; < t; < 2P for all i, and that 2 < a < p'/2. We certainly have ged(s;, t;) = 1,
as s; is an odd prime and ¢; is a power of two. Let

0 =——1> —-1= >n=—.
S; 1-—7 1—n K 4d
Then
12d%b d
4
0; > =3db=—--p>p,
“ 1q Sdb=gp2p

so 0; > p/a* as required.

Theorem 4.1 thus produces maps A: ®; C* — ®; Ct and B: ®; Ct — ®; C*%
such that F,, . s, = 2VAF, .. +,B, and approximations A @, @g — ®; (Cé and
B: ®;Ct — ®;C%. Applying Theorem 3.1 (whose hypotheses were verified ear-
lier), we obtain furthermore an approximation ﬁtl,...,td for F4,,....t,- Now consider
the scaled transform

,,,,,

! — 97 —
‘7:‘5‘1 d 2 ]:sl,...,sd - A‘Ftlv'“:tdB’

yeeesS

and the approximation ]:—;1,“.,8(1, = fl]:"thm,tdl?. By Corollary 2.7 we have

e(FL o) <el(A) +e(Fiy uy) +e(B) < 2dp* + 8T log, T.

.....

As it is known that || F,, . .|| < 1, we obtain the desired approximation }:Sh__m
by applying Lemma 2.2 with ¢ := 27 to the output of 7 (the condition ¢ < 2P
holds as v < 8%/% < p; see (5.2)). We therefore obtain

e(Fs,

.....

,,,,, ) T3
< 27" (2dp* 4+ 8T log, T) + 3
< 277(3dp* + 8T log, T).
Since
3dp® < 108bY/12p? = 108[log, n|**/12 < n'/2 < T < 8T log, T,

we conclude that e(F,,  .,) < 27T log, T.
The cost of the scaling is O(Sp'*T?) = O(Tp**?), so the overall complexity is

C(]:—Sl,m,sd) = C(“Zl) + C(]:—thm,td) + C(B) + O(Tp1+5)
4T
= — M(3rp) + O(dTp** °a + Tplog T + Tp'+?).
,
Recalling (5.1) and the assumption § < &, we see that
dp/ P+ = O(pV/12p3/2H0pTI24) — O(p'/5+8) = O (p?).

By definition p = O(logn), and (5.3) yields T' = O(n/logn). The bound for
C(Fs,,....s,) thus simplifies to (47'/r) M(3rp) + O(nlogn). O



Integer multiplication in time O(nlogn) 37

Next we construct an approximation for the scaled convolution map M: ®; C% x

®; C* — ®@; C* given by M(u,v) = $u*v. Note that [|M| < 1.

Pr(gposition~ 5.3. We may construct a numerical approzimation M: ®; ng‘ X

®; Cs — ®; Cs for M such that (M) < V872 logy T and

12T

—M
r

(5.7) C(M) < (3rp) + O(nlogn).

Proof. We are given as input u,v € ®; C3. Let w := M(u,v) = %u xv € @; Co.

According to (2.1) we have w = Sw’ where w' = F; (Fs, . sqt " Fsy,.54V)-
We use the following algorithm (essentially the same as in the proof of Proposition
3.4). We first compute an approximation @' € ®; @f, by using Proposition 5.2
to handle the forward and inverse transforms, and Corollary 2.9 to handle the

pointwise multiplications. Applying Lemma 2.6 in the usual way, we obtain
(@) < e(For,oa) + €(For,sa) ¥ (F su) +2
<3- 27T log, T +2< 2 -27%Tlog, T.
Then we apply Lemma 2.2 (with ¢ :== S < T < 2P) to obtain an approximation
w € ®@; CJ such that
e(w) < 2Se(W) +3 < 7S -27 T logy T +3 < 27T % log, T.

The cost of the pointwise multiplications and scalings is O(Sp'*®) = O(nlogn),
and the constant 12 accounts for the three invocations of Proposition 5.2. O

5.3. Integer multiplication. We are now in a position to describe the recursive
step of the main integer multiplication algorithm.

Proposition 5.4. Forn > ng we have
12T
(5.8) M(n) < - M(3rp) + O(nlogn).

Proof. We are given as input positive integers f, g < 2". The algorithm consists of
the following series of reductions.

(1) Reduce to one-dimensional convolution over Z. Let N = [n/b] where b =
[log, ] as above. We split f and g into N chunks of b bits, i.e., we write f = F(2°)
and g = G(2°) where

=

N-—-1 —1
F(.’E) = Z Fj{Ej € Z[SE], G(LE) = Gj.’Ej S Z[IE], 0< Fj,Gj < 2b.
Jj=0 J

I
o

We have fg = (FG)(2%), so it suffices to compute the polynomial product H(z) =
F(x)G(x) and then evaluate at = 2°. The coefficients of H(z) lie in the interval
0 < H; < 2?°N < 23%; in particular, they have at most 3b = O(logn) bits, so the
evaluation may be achieved via a straightforward overlap-add algorithm in time
O(Nlogn) = O(n). By (5.3) and (5.6) we have

2n T

so it suffices to compute F(x)G(z) (mod x° — 1).
(2) Reduce to d-dimensional convolution over Z. We now use the Agarwal-
Cooley method [1] to reduce to a multidimensional convolution. Consider the ring

o =Lxy, ..., xql/(x]t — 1, 2 —1).
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As the integers s, ..., sq are pairwise relatively prime, there is an isomorphism of
rings Z[z]/(2% — 1) 2 & induced by the Chinese remainder theorem (for instance,
by sending = to x1---x4). Let F/',G',H' € & be the images of F, G and H,
so that H' = F'G’. In the Turing model, F’, G’ and H’ are represented as d-
dimensional arrays of integers of 3b bits, using a similar layout to the tensor products
in Section 2.3. The isomorphism amounts to a data rearrangement, and may be
computed in either direction in time

O(bSlogS) =0T 1logT) = O(nlogn)

by attaching labels and sorting, as in the proof of Proposition 4.6(ii). (For an
alternative algorithm that does not rely on sorting, see [23, Sec. 2.3].) We have
thus reduced to the problem of computing H' = F'G’ in &/

(3) Reduce to approxzimate d-dimensional convolution over C. Regarding o as
a subring of

Clz1,...,zql/(zf* —1,... 25 — 1) = (®; C*, %),

let F”,G", H" € ®; C% be the elements corresponding to F’, G’ and H’, so that
H" = F"x«G". Let v :=2""F" v :=27"G" and w := M(u,v) = tu*v. Then
llull, [[v]l, [[w]| <1, and H” = 22*Sw. Recalling our choice of working precision p =
6[logy n], we may use Proposition 5.3 to compute an approximation w = ./\;l(u, v) €
®; C% such that e(w) < 271872 log, T in time (127/r) M(3rp) + O(nlogn).

Now observe that

[H" =22 S| = 2°°S |lw — @] < 20T+ 7P log, T.
Since T < n < 2% and T'logy T < T'logyn < Th < 8n < 2Y13, this yields
||H// _ 22bSU~]” < 25b+’y+117p _ 27b+'y+11'

But v < 86%/3 < b — 13 (as b > 4096), so
|H" — 220 S| < 1.

In particular, we may recover H” in time O(Sp'*%) = O(nlogn) by multiplying
each coefficient of @ by 22*S and then rounding to the nearest integer. O

Corollary 5.5. Define T(n) .= M(n)/(nlogn) for n > 2. For n > ny we have

1728
T(n) <

2
Proof. Dividing (5.8) by nlogn yields
36Tp log(3
< 35T Tog(3)
n logn

By (5.3) we have 36Tp/n = 216Tb/n < 1728. By (5.4) we have r < 27"/¢ < 2p1/4,
so

-T(3rp) + O(1).

logn d logn d logon  d b—1
Since b > 4096 we have

log(3rp) 1  log(36b) 1 log,(360) o 1 n log,(36b)

log, (36b) 1 1
< PR
b—1 " 2/6 S o
and the result follows from the observation that

1 1 1/, 1\ 1/, 1\ ' 1
d+hﬂ_d0+w><d0_%) =a-T H
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Finally we may prove the main result of the paper.

Proof of Theorem 1.1. We take d := 1729. According to Corollary 5.5, there is an
absolute constant A > 0 such that

T(n) <0.9998 - T(3rp) + A
foralln > ng = 21729 Define

B:= max T(n), C := max(B,50004)
2<n<ng
(Recall that for n < ng, we use any convenient base-case multiplication algorithm
to define M(n), and hence T(n).)
We prove by induction that T(n) < C for all n > 2. The choice of B ensures
that the statement holds for n < ng. Now assume that n > ng. By (5.4) we have

3rp < 6T < 360/ = 36n'/17°[log, n] < n.
By induction,
T(n) < 0.9998C + A < 0.9998C + 0.0002C = C.
Hence T(n) = O(1) and M(n) = O(nlogn). O

5.4. Optimising the dimension threshold. It is possible to improve the factor
K = 1728 appearing in Corollary 5.5, at the expense of introducing various technical
complications into the algorithm. In this section we outline a number of such
modifications that together reduce the constant to K = 8 + ¢, so that the modified
algorithm achieves M(n) = O(nlogn) for any d > 9 (rather than d > 1729). The
techniques described here are similar to those used in [25] to optimise the value
of K in the Fiirer-type bound M(n) = O(nlogn K'°& ™).

(1) We may increase the chunk size from b = ©(logn) to b = ©(lognloglogn),
and then take the working precision to be p = 2b+ O(logn) = (2 + o(1))b
rather than 6b. This improves K by a factor of 3. Note that the O(logn)
term must be chosen large enough to ensure correct rounding at the end of
the proof of Proposition 5.4. (We cannot take b as large as (logn)?, as is
done in [25], because then the Gaussian resampling becomes too expensive.)

(2) The choice of b in the previous item allows us to improve the term 3rp in
Lemma 2.5 to (2+0(1))rp, by packing the coefficients together more tightly
in the Kronecker substitution step (the hypothesis r < 2P~1 must also be
tightened somewhat). This improves K by a factor of 3/2.

(3) In Bluestein’s algorithm (see proof of Proposition 3.1), the multiplicand a
is invariant, i.e., does not depend on the input vector u. To take advantage
of this, we change the basic problem from multiplication of two arbitrary
integers to multiplication of an arbitrary integer by a fixed integer. Con-
sequently we save one forward transform in the proof of Proposition 5.3,
reducing the factor 12 in (5.7) to 8. This improves K by a factor of 3/2.

(4) We may choose the primes s; closer to t;, so that instead of T' < 25 (see
(5.6)) we have T' < (1 + 0(1))S. This improves K by a factor of 2. Some
care is needed to avoid excessive precision loss in the Gaussian resampling
step, due to the larger values of o and ~.

(5) By allowing T to contain small odd prime factors, or alternatively by in-
troducing flexibility into the choice of b, we may improve the choice of T
to (44 o(1))n/b (see (5.3)). This improves K by a factor of 2.
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(6) We may change the basic problem from multiplication in Z to multiplication
in Z[i]. In step (1) of the proof of Proposition 5.4, the chunks F; and G;
are taken in Z[i] instead of Z, and in step (1) of the proof of Lemma 2.5,
the evaluations lie in Z[i] instead of Z. This improves K by a factor of 4,
essentially by eliminating the factor 4 appearing in Lemma 2.5.

(7) We may change the basic problem from multiplication in Z[i] to multiplica-
tion in Z[i] /(2" +1)Z[i]. Note that the Kronecker substitution in Lemma 2.5
maps the multiplication modulo y” + 1 naturally onto this problem. This
improves K by a factor of 2, because it avoids the degree growth in step (1)
in the proof of Proposition 5.4. It also introduces a technical difficulty into
that step: to reduce a multiplication modulo 2" + 1 to a polynomial multi-
plication modulo #° — 1 (or 2% + 1), we must split an n-bit integer into S
chunks, even though n will not in general be divisible by S. This may be
addressed by means of the Crandall-Fagin algorithm [9].
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