Cardinality Estimation

Robert Sedgewick
Princeton University

with special thanks to Jérémie Lumbroso



Philippe Flajolet, mathematician and computer scientist extraordinaire

e

Phi/ /ppe F/ g/o/eZ‘

\ l

,_].....—

/ :

Philippe Flajolet 1948-2011



Don Knuth’s legacy: Analysis of Algorithms (AofA)

Understood since Babbage:
e Computational resources are limited.
e Method (algorithm) used matters.

Analytic Engine

Knuth’s insight: AofA is a scientific endeavor.
e Develop mathematical model of its behavior.

e Use the program to validate hypotheses.

e Start with a working program (algorithm implementation).

e Use the model to formulate hypotheses on resource usage.

how many times do we
have to turn the crank?

e Iterate on basis of insights gained.
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AofA has played a critical role

in the development of our computational infrastructure and the advance of scientific knowledge
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“PEOPLE WHO ANALYZE ALGORITHMS have double happiness. They experience the sheer beauty of elegant
mathematical patterns that surround elegant computational procedures. Then they receive a practical
payoff when their theories make it possible to get other jobs done more quickly and more economically.”

— Don Knuth




Analysis of Algorithms (present-day context)

Theoretical
Computer
Science

Practical computing AofA Theoretical computer science
e Real code on real machines e Theorems and code e Theorems
e Thorough validation e Precise math models e Abstract math models

e Limited math models o Experiment, validate, iterate e Limited experimentation



* Warmup: exact cardinality count



Cardinality counting

Q. In a given stream of data values, how many different values are present?

Reference application. How many unique visitors in a web log?

log.07.f3.txt

109.108.229.102
pool-71-104-94-246.1sanca.dsl-w.verizon.net

117.222.48.163

pool-71-104-94-246.1sanca.dsl-w.verizon.net UNIX (1 )

1.23.193.58 (1970s-present)
188.134.45.71 % sort@'log.O?.fB.txt | we -1
1.23.193.58 1112365

gsearch.CS.Princeton.EDU unique”

pool-71-104-94-246.1sanca.dsl-w.verizon.net

81.95.186.98.freenet.com.ua
81.95.186.98.freenet.com.ua SQL (1970s-present)

81.95.186.98.freenet.com.ua SELECT

PE-121-218-151-176.1 .cht.b1 d. . .
? AAAAA --8--5 0.1nse3.c 1gpond.net.au DATE_TRUNC(‘day’ ,event_time),

6 million strings COUNT(DISTINCT user_id),
COUNT(DISTINCT url)
FROM weblog

State of the art in the wild for decades. Sort, then count.




III

Standard “optimal” solution: Use a hash table

Hashing with linear probing
e Create a table of size M.
e Transform each value into a “random” table index.

e Move right to find space if value collides.
e Count values new to the table.

example: multiply by a prime,
then take remainder after dividing by M.

small exampledatastreem P J J E K J L C K O M TP GL J I F KC

hash values (x-(‘A’))*97 % 17) 15 6 6 14 1 6 13 7 1 15 8 7 15 4 13 6 11 9 1 7

hash table (M = 17) K G JIC|M T LI E|P

count ]_ 1

Additional (key) idea. Keep searches short by doubling table size when it becomes half full.



Mathematical analysis of exact cardinality count with linear probing

Theorem. Expected time and space cost is linear.

Proof. Follows from classic Knuth Theorem 6.4.K.

Theorem K. The average number of probes needed by Algorithm L, assuming

that all M hash sequences (35) are equally likely, is

Cn = 5(1+Qo(M,N—1)) (successful search),

-

Cy = %(1 + Q1(M,N)) (unsuccessful search),

where
| N (r+I\N  /r+2\N(N —1)
(M, N =( ) ( )_ ( ) V-
GiMN=0) U Jut e )T
_Z(T-{-k):\ N —1 N—-k+1
“2\ r )JMTM V.

Proof. Details of the calculation are worked out in exercise 27. (For the variance,

see exercises 28, 67, and 68.) |

“I first formulated [this] derivation in 1962.
Since this was the first nontrivial algorithm
| had ever analyzed satisfactorily, it had a
strong influence on the structure of these
books. Ever since that day, the analysis of
algorithms has in fact been one of the
major themes of my life.”

— Knuth, TAOCP volume 3

THE CLASSIC WORK
NEWLY UPDATED AND REVISED

The Art of
Computer
Programming

VOLUME 3

Sorting and Searching

Second Edition

DONALD E. KNUTH

Q. Do the hash functions that we use uniformly and independently distribute keys in the table?

A. Not likely.



Scientific validation of exact cardinality count with linear probing

Hypothesis. Time and space cost is linear for the hash functions we use and the data we have.

Quick experiment. Doubling the problem size should double the running time.

get problem size
initialize input stream
get current time

print count

print elapsed time

{

Driver to read N strings and count distinct values

public static void main(String[] args)

int N = Integer.parselnt(args[0]);
StringStream stream = new StringStream(N);
long start = System.currentTimeMi111s();

StdOut.printin(count(stream));
long now = System.currentTimeMi111s();

double time = (now - start) / 1000.0;
StdOut.printlin(time + " seconds”);

Q. Is hashing with linear probing effective?

A. Yes. Validated in countless applications for over half a century.

% java Hash 2000000 < 1og.07.f3.txt
483477

3.322 )seconds

% java Hash 4000000 < l1og.07.f3.txt
883071

seconds

% java Hash 6000000 < log.07.f3.txt

1097944
seconds

4

% sort -u log.07.f3 | wc -1

1097944

1

sort-based method
takes about 3 minutes

|0



Complexity of exact cardinality count

. . . . ,
Q. Does there exist an optimal algorithm for this problem: Upper bound

A. Depends on definition of “optimal”.

Guaranteed linear-time? NO. Linearithmic lower bound. Larar 5o
Guaranteed linearithmic? YES. Balanced BSTs or mergesort.

Linear-time with high probability assuming the existence of random bits?
YES DynamiC pe rfECt haShing- Dietzfelbinger, Karlin, Mehlhorn, Meyer auf der Heide, Rohnert, and Tarjan

Dynamic Perfect Hashing: Upper and Lower Bounds
SICOMP 1994,

Linear with a small constant factor in practical situations?

YES. Hashing with linear probing. ¥ e ane S, Vad her

Why Simple Hash Functions Work: Exploiting the Entropy in a Data Stream.
SODA 2008.

Hypothesis. Hashing with linear probing is “optimal”. <«—— but TSTs may give a sublinear algorithm



Exact cardinality count requires linear space

Q. | can’t use a hash table. The stream is much too big to fit all values in memory. Now what?
A. Bad news: You cannot get an exact count.

A. (Bloom, 1970) You can get an accurate estimate using a few bits per distinct value.

109.108.229.102
pool-71-104-94-246.1sanca.dsl-w.verizon.net
117.222.48.163
pool-71-104-94-246.1sanca.dsl-w.verizon.net
1.23.193.58

188.134.45.71

1.23.193.58

gsearch.CS.Princeton.EDU
pool-71-104-94-246.1sanca.dsl-w.verizon.net
81.95.186.98.freenet.com.ua
81.95.186.98.freenet.com.ua
81.95.186.98.freenet.com.ua
CPE-121-218-151-176.1nse3.cht.bigpond.net.au
117.211.88.36
msnbot-131-253-46-251.search.msn.com
msnbot-131-253-46-251.search.msn.com

A. Much better news: You can get an accurate estimate using only a handful of bits (stay tuned).

12
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Cardinality estimation

is a fundamental problem with many applications where memory is limited.

Q. About how many different values appear in a given stream?

Constraints
e Make one pass through the stream.
e Use as few operations per value as possible
e Use as little memory as possible.
e Produce as accurate an estimate as possible.

typical
applications How many unique Which sites are the
visitors to my website? most/least popular?

How many different websites

visited by each customer? How many different values

for a database join?

To fix ideas on scope: Think of billions of streams each having trillions of values.

14



Probabilistic counting with stochastic averaging (PCSA)

Flajolet and Martin, Probabilistic Counting Algorithms for Data Base Applications FOCS 1983, JCSS 1985.

i

JOURNAL OF COMPUTER AND SYSTEM SCIENCES 31, 182-209 (1985)
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This paper introduces a class of probabilistic counting algorithms with which one can
estimate the number of distinct elements in a large collection of data (typically a large file
stored on disk) in a single pass using only a small additional storage (typically less than a
hundred binary words) and only a few operations per element scanned. The algorithms are

u - based on statistical observations made on bits of hashed values of records. They are by con-
C O n t r I b u t I O n S struction totally insensitive to the replicat‘ive structure of clcm_cn!s in the file; they can be used
in the context of distributed systems without any degradation of performances and prove
especially useful in the context of data bases query optimisation. 171985 Academic Press. Inc
e Introduced problem
As data base systems allow the user to specify more and more complex queries,
l ~ the need arises for efficient processing methods. A complex query can however
o I d e a Of S tream Ing a gorlt m generally be evaluated in a number of different manners, and the overall perfor-

mance of a data base system depends rather crucially on the selection of
appropriate decomposition strategies in each particular case.

® I d e a Of i S m a I I ) Ske tch Of i b i g ) d ata Even a problem as trivial as computing the intersection of two collections of data

A and B lends itself to a number of different treatments (see, e.g.,, [7]):

[. INTRODUCTION

OB 1 Sort A, search each element of B in 4 and retain it if it appears in A4;

e Detailed analysis that yields tight bounds on accuracy

® F u I I Val i d at i O n Of m at h e m at i Cal re S u ItS W i t h e X p e ri m e n tat i O n ::1 tlfg:j:tszmcwl'a::;on strategy will have a cost essentially determined by the

number of records @, b in A and B, and the number of distinct elements «, f in 4
and B, and for typical sorting methods, the costs are:

e Practical algorithm that has remained effective for decades

(022-0000/85 $3.00

Bottom line: Quintessential example of the effectiveness of scientific approach to algorithm design.



PCSA first step: Use hashing

Transform value to a “random” computer word.
e Compute a hash function that transforms
data value into a 32- or 64-bit value. «—
e Cardinality count is unaffected (with high probability).
e Built-in capability in modern systems.
o Allows use of fast machine-code operations.

20th century: use 32 bits (millions of values)
21st century: use 64 bits (quadrillions of values)

Example: Java

e All data types implement a hashCode() method String value = “gsearch.CS.Princeton.EDU”
(though we often override the default). int x = value.hashCode();
e String data type stores value (computed once). \
current Java default

Is 32-bit 1nt value
Bottom line: Do cardinality estimation on streams of (binary) integers.

01111000100111110111000111001000
01111000100111110111000111001000
01110101010110110000000011011010
00110100010001111100010100111010
00010000111001101000111010010011

00001001011011100000010010010111
NNNNTNNTNTTINTTTNNNNNNTANTANTNATT1

“Random” except for the fact
that some values are equal.

|6



Initial hypothesis

Hypothesis. Uniform hashing assumption is reasonable in this context.

Implication. Need to run experiments to validate any hypotheses about performance.

No problem!
e AOfA is a scientific endeavor (we always validate hypotheses).
e End goal is development of algorithms that are useful in practice.
e It is the responsibility of the designer to validate utility before claiming it.

e After decades of experience, discovering a performance problem due to
a bad hash function would be a significant research result.

Unspoken bedrock principle of AofA.
Experimenting to validate hypotheses is WHAT WE DO!

|7



Probabilistic counting starting point: three integer functions

Definition. p(X) is the number of 1s in the binary representation of x.

Definition. ¥(X) is the number of trailing 1s in the binary representation of X. «— position of rightmost 0

Definition. R(x) = 2r® 1514 1312 1110 9 8 7 6@4 3 2 1 0 p(X) NX) R(X) R(X)>
1011110111110101 12 1 2 10
1010101010001110 8 0 1 1
0110100101011111 10 32 100000

11111

S . 0110100101011111 x

Bit-whacking magic. 1001011010100000 X i

R(x) is easy to compute. 0110100101100000 x+1 >onatypica/

0000000O0O0O01000OO ~&C+D computer

Beeler, Gosper, and Schroeppel

Exercise: Compute p(X) as easily. HAKMEM item 169, MIT Al Laboratory AIM 239, 1972
http://www. 1nwap.com/pdpl0/hbaker/hakmem/hakmem.html
Note: ¥(x) = p(R(x) — 1). (A see also Knuth volume 4A

Bottom line: p(x), r(x), and R(x) all can be computed with just a few machine instructions.
|8



Probabilistic counting (Flajolet and Martin, 1983)

b S p olp |
Maintain a single-word sketch that summarizes a data stream xo, xi1, ..., Xn, ... : . } - !
e For each xn in the stream, update sketch by bitwise or with R(xn). L? ’ Q" \\
e Use position of rightmost 0 (with slight correction factor) to estimate Ig N. |

estimate of Ig N

!

31 30292827262524232229]817]615]4]3121]]09 8 76543210
sketch coooo00001011011111111111111111111

typical sketch XN 00110101011111101010101010001111
N = 106 R(x) = 2k
R(xXn) 00000000000000000000000000010 00 0« with probability

1/ 2k
Sketch|R(xN)OOOOOOOlO11@11111111111111111111

1 1

leading bits almost surely O trailing bits almost surely 1

Rough estimate of IgN is r(sketch).

Rough estimate of N is R(sketch). <«— correction factor needed (stay tuned)

19



Probabilistic counting trace

X
01100010011000111010011110111011
01100111001000110001111100000101
00010001000111000110110110110011
01000100011101110000000111011111
01101000001011000101110001000100
00110111101100000000101001010101
00110100011000111010101111111100
00011000010000100001011100110111
00011001100110011110010000111111
01000101110001001010110011111100

r(x)
2
1

2

5
0
1
0
3
$
0

R(x)
100
10
100
100000
1
10
1
1000
1000000
1

sketch
00000000000000000000000000000100
00000000000000000000000000000110
00000000000000000000000000000110
00000000000000000000000000100110
00000000000000000000000000100111
00000000000000000000000000100111
00000000000000000000000000100111
00000000000000000000000000101111

00000000000000000000000001101111
00000000000000000000000001101111

R(sketch) = 10000
=16

20



Probabilistic counting (Flajolet and Martin, 1983)

public long R(long x)
{ return ~x & (x+1); }

public long estimate(Iterable<String> stream)

{
long sketch;

for (s : stream)
sketch = sketch | R(s.hashCode());

return R(sketch) /.77351;

Early example of “a simple algorithm whose analysis isn’t”

Q. (Martin) Estimate seems a bit low. How much?

A. (unsatisfying) Obtain correction factor empirically.

A. (Flajolet) Without the analysis, there is no algorithm!

Maintain a sketch of the data
e A single word
e OR of all values of R(x) in the stream
e Return smallest value not seen

with correction for bias

Wﬂﬁ%
Maky




Mathematical analysis of probabilistic counting

Theorem. The expected number of trailing 1s in the PC sketch is
lg(¢N) + P(IgN) +0o(1) where ¢ = 77351

and P is an oscillating function of lg N of very small amplitude.

Proof (omitted).

1980s: Flajolet tour de force

trailing 1s
in sketch

1990s: trie parameter /
|| ||
21st century: standard AC «_ stay tuned for
Szpankowski talk R highest null
left of
Kirschenhofer, Prodinger, and Szpankowski right spine

Analysis of a splitting process arising in probabilistic counting and other related algorithms, ICALP 1992.

Jacquet and SzpankowsKki
Analytical depoissonization and its applications, TCS 1998.

In other words. In PC code, R(sketch)/.77351 is an unbiased statistical estimator of N.

22



Validation of probabilistic counting

Hypothesis. Expected value returned is N for random values from a large range.

Quick experiment. 100,000 31-bit random values (20 trials)

Flajolet and Martin: Result is “typically one binary order of magnitude off.”

Of course! (Always returns a power of 2 divided by .77351.)

Need to incorporate more experiments for more accuracy.

16384/.7735
32768/.7735
65536/.7735

1
1
1

2
4
8

1181
2362
4725

23
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Stochastic averaging

Goal: Perform M independent PC experiments and average results.

Alternative 1: M independent hash functions? No, too expensive.

Alternative 2: M-way alternation? No, bad results for certain inputs. / 01 01 O]

02 02 02
01 02 03 04 01 02 03 04 01 02 03 04 =
? 03 03 03
04 04 04
Alternative 3: Stochastic averaging
e Use second hash to divide stream into 27 independent streams |
key point: equal values

e Use PC on each Stream, Y|EId|ng 2m sketches . all go to the same stream
e Compute mean = average number of trailing bits in the sketches. l

e Return 2mean/ 77531.
/09 07 07

1110 11
11 09 07 23 31 07 22 22 10 11 39 21 =—

?23 22 22 21
31 39

25



PCSA trace

use initial m bits M =4
for second hash
l X R(x) sketch[0] sketch[1] sketch[2] sketch[3]
1010011110111011 100 0000000000000100
0001111100000101 10 0000000000000010
0110110110110011 100 0000000000000100
0000000111011111 100000 0000000000100010
0101110001000100 1 0000000000000101
0000101001010101 10 0000000000100010
1010101111111100 1 0000000000000101
0001011100110111 1000 0000000000101010
1110010000111111 1000000 0000000001000000
1010110011111101 10 0000000000000111

0001110100110100 1 0000000000101011

0000000000101011 ({0000000000000101 {0000000000000111 {0000000001000000

r (sketch[ |) 2 ] 3 0



Probabilistic counting with stochastic averaging in Java

public static long estimate(Iterable<Long> stream, int M)
{
longl] sketch = new long[M]; ldea. Stochastic averaging
for (long x : stream)
{ e Use second hash to split into
int k = hash2(x, M); M = 2m independent streams
\ sketch[k] = sketch[k] | R(x); . Use PC on each stream,
T yielding 2m sketches .
for (int k = 0; k < M; k++) e Compute mean = average #
sum += r(sketchl[k]); trailing 1 bits in the sketches.
double mean = 1.0 * sum / M;
return (1nt) (M * Math.pow(2, mean)/.77351); e Return 2mean/.77351.
h

Flajolet-Martin 1983

Q. Accuracy improves as M increases Theorem (paraphrased to fit context of this talk).

Under the uniform hashing assumption, PCSA

Q. How much? e Uses 64M bits.
e Produces estimate with a relative accuracy

close to 0.78/vVM.

27



Validation of PCSA analysis

Hypothesis. Value returned is accurate to 0.78/vM for random values from a large range.

Experiment. 1,000,000 31-bit random values, M= 1024 (10 trials)

% java PCSA 1000000 31 1024 10
964416

997616 . °
959857 =
1024303 —
972940 - .
985534
998291 o °
996266
959208
1015329

28



Space-accuracy tradeoff for probabilistic counting with stochastic averaging

1

S
I

64

Relative accuracy:

0.78
VM

10% [~

M = 1024

5% [~

3264 128 256 512 1024

Bottom line.
e Attain 10% relative accuracy with a sketch consisting of 64 words.
e Attain 2.4% relative accuracy with a sketch consisting of 1024 words.



Scientific validation of PCSA

Hypothesis. Accuracy is as specified for the hash functions we use and the data we have.
Validation (Flajolet and Martin, 1985). Extensive reproducible scientific experiments (1)

Validation (RS, this morning).
log.07.f3.txt

109.108.229.102
pool-71-104-94-246.1sanca.dsl-w.verizon.net
117.222.48.163

% java PCSA 6000000 1024 < 1og.07.f3.txt poo1-71-104-94-246.1sanca.ds1-w.verizon.net

1106474 1.23.193.58
188.134.45.71
T 1.23.193.58
gsearch.CS.Princeton.EDU

<1% larger than actual value poo1-71-104-94-246.1sanca.ds1-w.verizon.net

81.95.186.98.freenet.com.ua
81.95.186.98.freenet.com.ua
81.95.186.98.freenet.com.ua
CPE-121-218-151-176.1nse3.cht.bigpond.net.au

e — -— - - — o= - o=

Q. Is PCSA effective?

A. ABSOLUTELY!

30



Summary: PCSA (Flajolet-Martin, 1983)

is a demonstrably effective approach to cardinality estimation

JOURNAL OF COMPUTER AND SYSTEM SCIENCES 31, 182-209 (1985)

Q. About how many different values are present in a given stream? Probabiistc Counting Algorihms

for Data Base Applications
PHILIPPE FLAJOLET
INR)A, Rocquencourt, 78153 Le Chesnay, France

AND

G. NIGEL MARTIN

IBM Development Laboratory, Hursley Park,
Winchester, Hampshire SO212JN, United Kingdom
Received June 13, 1984; revised April 3, 1985
This paper introduces a class of probabilistic counting algorithms with which one can
estimate the number of distinct elements in a large collection of data (typically a large file
. a e S 0 n e paSS rO l I g e S re a m . stored on disk) in a single pass using only a small additional storage (typically less than a

hundred binary words) and only a few operations per element scanned. The algorithms are
based on statistical observations made on bits of hashed values of records. They are by con-

- - - struction totally insensitive to the replicative structure of elements in the file; they can be used
e Uses a fe w machine instructions per va lue ol el S o s Qs SR, 4 o

especially useful in the context of data bases query optimisation. 71985 Academic Press. Inc

e Uses M words to achieve relative accuracy 0.78/vM ‘/

As data base systems allow the user to specify more and more complex queries,
the need arises for efficient processing methods. A complex query can however
generally be evaluated in a number of different manners, and the overall perfor-
mance of a data base system depends rather crucially on the selection of
appropriate decomposition strategies in each particular case.

Even a problem as trivial as computing the intersection of two collections of data
A and B lends itself to a number of different treatments (see, e.g., [7]):

ReSUItS Valldated th rough EXtenS|Ve eXperImentatlon. '0B° | Sort 4, search each element of B in A and retain it if it appears in 4

2. sort A4, sort B, then perform a merge-like operation to determine the inter-

section;

3. eliminate duplicates in A and/or B using hashing or hash filters, then per-
form Algorithm 1 or 2.

Each of these evaluation strategy will have a cost essentially determined by the
number of records a, b in A and B, and the number of distinct elements o, f/ in A
and B, and for typical sorting methods, the costs are:

182
0022-0000/85 $3.00

Open questions A poster child for AofA/AC

e Better space-accuracy tradeoffs?

e Support other operations? “IT IS QUITE CLEAR that other observable regularities on hashed
| values of records could have been used...

— Flajolet and Martin



Small sample of work on related problems

1970

1984

1996-

2000

2004

2005

2012

2014

Bloom
Wegman

many authors

Indyk

Cormode-
Muthukrishnan

Giroire

Lumbroso

Helmi—-Lumbroso-
Martinez-Viola

set membership
unbiased sampling estimate
refinements (stay tuned)

LT horm

frequency estimation
deletion and other operations

fast stream processing
full range, asymptotically unbiased

uses neither sampling nor hashing
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We can do better (in theory)

Alon, Matias, and Szegedy
The Space Complexity of Approximating the Frequency Moments
STOC 1996; JCSS 1999.

Contributions
e Studied problem of estimating higher moments
e Formalized idea of randomized streaming algorithms
e Won Gddel Prize in 2005 for “foundational contribution”

Theorem (paraphrased to fit context of this talk).

With strongly universal hashing, PC, for any c >2, Replaces “uniform hashing” assumption
e Uses O(log N ) bits. with “random bit existence” assumption

e IS accurate to a factor of ¢, with probability at least 2/c.

BUT, no impact on cardinality estimation in practice
e “Algorithm” just changes hash function for PC
e Accuracy estimate is too weak to be useful
e No validation

34



Interesting quote

“Flajolet and Martin [assume] that one may use in the algorithm
an explicit family of hash functions which exhibits some ideal
random properties. Since we are not aware of the existence of
such a family of hash functions ...”

Theoretical
Computer
Science

— Alon, Matias, and Szegedy

No! They hypothesized that practical hash functions would be as effective as random ones.
They then validated that hypothesis by proving tight bounds that match experimental results.

Points of view re hashing
e Theoretical computer science. Uniform hashing assumption is not proved.
e Practical computing. Hashing works for many common data types.
e AofA. Extensive experiments have validated precise analytic models.

Points of view re random bits
e Theoretical computer science. Axiomatic that random bits exist.
e Practical computing. No, they don’t ! And randomized algorithms are inconvenient, btw.
e AofA. More effective path forward is to validate precise analysis even if stronger assumptions are needed.
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logs and loglogs

To improve space-time tradeoffs, we need to carefully count bits.

Relevant quantities
e Nis the number of items in the data stream.
e |g Nis the number of bits needed to represent numbers less than N in binary.
e |g Ilg Nis the number of bits needed to represent numbers less than Ig N in binary.

For real-world applications
e Nis less than 264,
e |g Nis less than 64.
e lg lg Nis less than 8.

Typical PCSA implementations
e Could use MIg N bits, in theory.
e Use 64-bit words to take advantage of machine-language efficiencies.
e Use (therefore) 6464 = 4096 bits with M =64 (for 10% accuracy with N < 264),
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We can do better (in theory)

Bar-Yossef, Jayram, Kumar, Sivakumar, and Trevisan
Counting Distinct Elements in a Data Stream
RANDOM 2002.

Contribution
Improves space-accuracy tradeoff at extra stream-processing expense.

Theorem (paraphrased to fit context of this talk).

With strongly universal hashing, there exists an algorithm that
e Uses O(M log log N) bits. «—— PCSA uses M Ig N bits

e Achieves relative accuracy O(1/vVM).

STILL no impact on cardinality estimation in practice
e Infeasible because of high stream-processing expense.
e Big constants hidden in O-notation
e No validation
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We can do better (in theory and in practice)

Durand and Flajolet
Loglog Counting of Large Cardinalities
ESA 2003; LNCS volume 2832.

Theoretical
Computer
Science

Contributions (independent of BYJKST)
e Presents LoglLog algorithm, an easy variant of PCSA
e Improves space-accuracy tradeoff without extra expense per value
e Full analysis, fully validated with experimentation

Theorem (paraphrased to fit context of this talk). PCSA saves sketches (Ig N bits each)
Under the uniform hashing assumption, LogLog 00000000000000000000000001101111
e Uses M Ig Ig N bits. LoglLog saves r() values (Iglg N bits each)
e Achieves relative accuracy close to 1.30/VM . 00100 ( = 4)
| like PCSA )
f-j./

Not much impact on cardinality estimation in practice only because
e PCSA was effectively deployed in practical systems
e |dea led to a better algorithm a few years later (stay tuned)
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We can do better (in theory and in practice): HyperLoglog algorithm (2007)

public static long estimate(Iterable<Long> stream, 1nt M)
{ 8-bit bytes (code to pack into

int[] bytes = new int[M]; )«— MloglogN bits omitted)

for (long x : stream)

{
int k = hash2(x, M);

if (bytes[k] < Bits.r(x)) bytes[k] = Bits.r(x):

double sum 0.0;
for (Aint k = 0; k < M; k++)

sum += Math.pow(2, -1.0 - bytes[k]);
return (1nt) (alpha * M * M / sum);

about .709 for M = 64

Flajolet-Fusy-Gandouet-Meunier 2007

ldea. Harmonic mean of r() values
e Use stochastic splitting

e Keep track of min(r (x)) for
each stream

e Return harmonic mean.

Flajolet, Fusy, Gandouet, and Meunier

HyperLoglog: the analysis of a near-
optimal cardinality estimation algorithm

AofA 2007; DMTCS 2007.

Theorem (paraphrased to fit context of this talk).
Under the uniform hashing assumption, HyperLoglLog

e Uses M log log N bits.

e Achieves relative accuracy close to 1.02/vVM .
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Space-accuracy tradeoff for HyperlLoglog

Relative accuracy: ——

10% [

5% [

64 128 256 512

Bottom line (for N < 264).

e Attain 10% relative accuracy with a sketch consisting of 108x6 = |648 bits
e Attain 3.1% relative accuracy with a sketch consisting of 1024x6 = 6144 bits.




PCSA vs Hyperloglog

Typical PCSA implementations
e Could use MIg N bits, in theory.
e Use 64-bit words to take advantage of machine-language efficiencies.
e Use (therefore) 6464 = 4096 bits with M =64 (for 10% accuracy with N < 264).

Typical Hyperloglog implementations
e Could use Mg lg N bits, in theory.
e Use 8-bit bytes to take advantage of machine-language efficiencies.
e Use (therefore) 108*8 = 864 bits with M= 108 (for 10% accuracy with N < 264),

4]



Validation of Hyperloglog
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Cardinality Estimation

*Rules of the game

* Probabilistic counting
*Stochastic averaging
» Refinements

* Final frontier



We can do a bit better (in theory) but not much better

Indyk and Woodruff
Tight Lower Bounds for the Distinct Elements Problem, FOCS 2003.

Upper bound

Theorem (paraphrased to fit context of this talk).
Any algorithm that achieves relative accuracy O(1/vVM) must use Q(M) bits

/

Lower bound

loglogN improvement possible

Kane, Nelson, and Woodruff
Optimal Algorithm for the Distinct Elements Problem, PODS 2010.

Theorem (paraphrased to fit context of this talk).
With strongly universal hashing there exists an algorithm that

e Uses O(M) bits. <7 optimal
(1/VM).

e Achieves relative accuracy O

Theoretical
Computer
Science

Unlikely to have impact on cardinality estimation in practice
e Tough to beat HyperLoglLog’s low stream-processing expense.
e Constants hidden in O-notation not likely to be < 6

e No validation
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Can we beat HyperLoglog in practice?
Practical
§ computing

N __

Necessary characteristics of a better algorithm
e Makes one pass through the stream.
e Uses a few dozen machine instructions per value

e Uses a few hundred bits
e Achieves 10% relative accuracy or better

“I've long thought that there should be a simple algorithm that uses a small constant times M bits...”
— Jérémie Lumbroso

# bits for
10% accuracy

machine instructions memory memory bound
per stream element bound when N < 264 when N < 264
HyperLoglLog 20-30 M loglog N oM 648
a few | love HyperLoglog
a few dozen hundred “ N~ ,—)

BetterAlgorithm

Also, results need to be validated through extensive experimentation.

45



A proposal: HyperBitBit (Sedgewick, 2016)

public static long estimate(Iterable<String> stream, i1nt M)

{
long sketch = 0;

long sketch2 = 0;
for (String x : stream)

{

long x = hash(s);

int k = hash2(x, 64);

1t (p(sketch) > 31)

{ sketch = sketch2; TgN++; sketch2 = 0; }
h

return (int) (Math.pow(2, 1gN + 5.4 + p(sketch)/32.0));

| !

bias factor (determined empirically)

Q. Does this even work?

ldea.
e TgN is estimate of lg N

e sketch is 64 indicators
whether to increment 1gN

e sketch?2 is is 64 indicators
whether to increment 1gN
by 2

e Update when half the bits
in sketch are 1

e correct with p(sketch)

and bias factor



Initial experiments

Exact values for web log example HyperBitBit estimates

% java Hash 1000000 < l1og.07.f3.txt % java HyperBitBit 1000000 < log.07.f3.txt
242601 234219

% java Hash 2000000 < 1og.07.f3.txt % java HyperBitBit 2000000 < log.07.f3.txt
483477 499889

% java Hash 4000000 < log.07.f3.txt % java HyperBitBit 4000000 < log.07.f3.txt
883071 916801

% java Hash 6000000 < l1og.07.f3.txt % java HyperBitBit 6000000 < log.07.f3.txt
1097944 1044043

1,000,000 2,000,000 4,000,000 6,000,000

Exact 242,601 483,477 883,071 1,097,944 i 3
o cfica‘ J Theoretical
HyperBitBit 234,219 499,889 916,801 1,044,043 P X oputing Computer
ratio 1.05 1.03 0.96 1.03 vV >
Next steps.
Conjecture. On practical data, HyperBItBit, for N < 264, e Analyze.
e Uses 128 + 6 bits. e Fxperiment.

e Estimates cardinality within 10% of the actual. e [terate



Summary/timeline for cardinality estimation

hashing

assumption

1970 Bloom Bloom filter  uniform
1985 Flajolet-Martin PCSA uniform
CMariace strong

1996 Alon-Matias-Szegedy [theorem] universal

Bar-Yossef—Jayram-
2002 Kumar-Sivakumar-  [theorem] uzgcz’;sgal
Trevisan
2003 Durand-Flajolet LogLog uniform

5007 Flajolet—-Fusy-

Gandouet—-Meunier HyperLoglLog uniform

Kane-Nelson- strong
2010 Woodruff [theorem] universal
2018+ RS-? HyperBitBit uniform

feasible
and
validated?

y

LA X X%«

X

v (?)

ook accirsey 10% aciraey
kN > 264
Mlog N 0.78 4096
O(Mlog N) O(1) ?
O(Mlog log N) O(1) ?
Mlglg N 1.30 1536
Mlglg N 1.04 648
OM)+Iglg N O(1) ?
2M+1glg N ? 134 (?)
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Happy Birthday, Don!
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Cardinality Estimation

Robert Sedgewick
Princeton University

with special thanks to Jérémie Lumbroso



