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Knuth’s insight: AofA is a scientific endeavor. 
• Start with a working program (algorithm implementation). 
• Develop mathematical model of its behavior. 
• Use the model to formulate hypotheses on resource usage. 
• Use the program to validate hypotheses. 
• Iterate on basis of insights gained.
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Don Knuth’s legacy: Analysis of Algorithms (AofA)

Understood since Babbage: 
• Computational resources are limited. 
• Method (algorithm) used matters.  

Analytic Engine

how many times do we 
have to turn the crank?

Difficult to overstate the significance of this insight. 



AofA has played a critical role

in the development of our computational infrastructure
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how many times 
to turn the crank?

how long to sort random data for 
cryptanalysis preprocessing?

how long to compile 
my program? how long to check 

that my VLSI circuit 
follows the rules?

how quickly can I find clusters?
how many bodies 

in motion can I 
simulate?

and the advance of scientific knowledge

“ PEOPLE WHO ANALYZE ALGORITHMS have double happiness. They experience the sheer beauty of elegant 
mathematical patterns that surround elegant computational procedures. Then they receive a practical 
payoff when their theories make it possible to get other jobs done more quickly and more economically.”

− Don Knuth
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Analysis of Algorithms (present-day context)

Theoretical 
Computer 
Science

Practical computing 

• Real code on real machines 

• Thorough validation 

• Limited math models

Theoretical computer science 

• Theorems 

• Abstract math models 

• Limited experimentation

AofA 
• Theorems and code 
• Precise math models 
• Experiment, validate, iterate

Practical 
computing AofA



OF

Cardinality Estimation

•Warmup: exact cardinality count 
•Probabilistic counting 
•Stochastic averaging 
•Refinements 
•Final frontier



109.108.229.102 
pool-71-104-94-246.lsanca.dsl-w.verizon.net 
117.222.48.163 
pool-71-104-94-246.lsanca.dsl-w.verizon.net 
1.23.193.58 
188.134.45.71 
1.23.193.58 
gsearch.CS.Princeton.EDU 
pool-71-104-94-246.lsanca.dsl-w.verizon.net 
81.95.186.98.freenet.com.ua 
81.95.186.98.freenet.com.ua 
81.95.186.98.freenet.com.ua 
CPE-121-218-151-176.lnse3.cht.bigpond.net.au 
117.211.88.36 
msnbot-131-253-46-251.search.msn.com 
msnbot-131-253-46-251.search.msn.com 
pool-71-104-94-246.lsanca.dsl-w.verizon.net 
gsearch.CS.Princeton.EDU 
CPE001cdfbc55ac-CM0011ae926e6c.cpe.net.cable.rogers.com 
CPE001cdfbc55ac-CM0011ae926e6c.cpe.net.cable.rogers.com 
118-171-27-8.dynamic.hinet.net 

7

Cardinality counting

Q. In a given stream of data values, how many different values are present?

Reference application. How many unique visitors in a web log?

State of the art in the wild for decades. Sort, then count.

SELECT 
DATE_TRUNC(‘day’,event_time), 
COUNT(DISTINCT user_id), 
COUNT(DISTINCT url) 
FROM weblog

SQL (1970s-present) 

log.07.f3.txt

6 million strings

% sort -u log.07.f3.txt | wc -l 
1112365

UNIX (1970s-present) 

“unique”
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hash table (M = 17)
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Standard “optimal” solution: Use a hash table

Hashing with linear probing 
• Create a table of size M. 
• Transform each value into a “random” table index. 
• Move right to find space if value collides. 
• Count values new to the table.

small example data stream P J J E K J L C K O M T P G L J I F K C

hash values (x-(‘A’))*97 % 17) 15 6 6 14 1 6 13 7 1 15 8 7 15 4 13 6 11 9 1 7

Additional (key) idea. Keep searches short by doubling table size when it becomes half full.

example: multiply by a prime, 
               then take remainder after dividing by M.

T

J EK LM

O

PCG I

F
count 01234567891011
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Mathematical analysis of exact cardinality count with linear probing

Theorem. Expected time and space cost is linear.

Proof. Follows from classic Knuth Theorem 6.4.K.

ptg999

From the Library of Robert Sedgewick

Q. Do the hash functions that we use uniformly and independently distribute keys in the table?

A. Not likely.

“ I first formulated [this] derivation in 1962. 
Since this was the first nontrivial algorithm 
I had ever analyzed satisfactorily, it had a 
strong influence on the structure of these 
books. Ever since that day, the analysis of 
algorithms has in fact been one of the 
major themes of my life.”

− Knuth, TAOCP volume 3
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Scientific validation of exact cardinality count with linear probing

Hypothesis. Time and space cost is linear for the hash functions we use and the data we have.

Q. Is hashing with linear probing effective?

A. Yes. Validated in countless applications for over half a century.

Quick experiment. Doubling the problem size should double the running time. 

public static void main(String[] args) 
{ 
   int N = Integer.parseInt(args[0]); 
   StringStream stream = new StringStream(N); 
   long start = System.currentTimeMillis(); 

   StdOut.println(count(stream));  

   long now = System.currentTimeMillis(); 
   double time = (now - start) / 1000.0; 
   StdOut.println(time + " seconds”); 
}

% java Hash 2000000 < log.07.f3.txt 
483477 
3.322 seconds 

% java Hash 4000000 < log.07.f3.txt 
883071 
6.55  seconds 

% java Hash 6000000 < log.07.f3.txt 
1097944 
9.49  seconds ✓

% sort -u log.07.f3 | wc -l 
1097944

sort-based method 
takes about 3 minutes

Driver to read N strings and count distinct values

get problem size
initialize input stream

get current time

print count

print elapsed time
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Complexity of exact cardinality count

Q. Does there exist an optimal algorithm for this problem?

Guaranteed linear-time?   NO. Linearithmic lower bound.

A. Depends on definition of “optimal”.

Linear-time with high probability assuming the existence of random bits?  
    YES. Dynamic perfect hashing.

Linear with a small constant factor in practical situations? 
    YES. Hashing with linear probing. M. Mitzenmacher and S. Vadhan 

Why Simple Hash Functions Work: Exploiting the Entropy in a Data Stream.  
SODA 2008.

Dietzfelbinger, Karlin, Mehlhorn, Meyer auf der Heide, Rohnert, and Tarjan 
Dynamic Perfect Hashing: Upper and Lower Bounds 

SICOMP 1994.

Hypothesis. Hashing with linear probing is “optimal”.

Guaranteed linearithmic? YES. Balanced BSTs or mergesort.

Upper bound

Lower bound

but TSTs may give a sublinear algorithm
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Exact cardinality count requires linear space

Q. I can’t use a hash table. The stream is much too big to fit all values in memory. Now what?

A. Bad news: You cannot get an exact count.

A. (Bloom, 1970) You can get an accurate estimate using a few bits per distinct value.

Help!

A. Much better news: You can get an accurate estimate using only a handful of bits (stay tuned).
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typical 
applications
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is a fundamental problem with many applications where memory is limited.

Cardinality estimation

Q. About how many different values appear in a given stream?

Constraints 
• Make one pass through the stream. 
• Use as few operations per value as possible 
• Use as little memory as possible. 
• Produce as accurate an estimate as possible.

How many unique 
visitors to my website?

How many different websites 
visited by each customer? How many different values 

for a database join?

To fix ideas on scope: Think of billions of streams each having trillions of values.

Which sites are the 
most/least popular?
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Probabilistic counting with stochastic averaging (PCSA)

Contributions 
• Introduced problem 
• Idea of streaming algorithm 
• Idea of “small” sketch of “big” data 
• Detailed analysis that yields tight bounds on accuracy 
• Full validation of mathematical results with experimentation 
• Practical algorithm that has remained effective for decades

Bottom line: Quintessential example of the effectiveness of scientific approach to algorithm design.

Flajolet and Martin, Probabilistic Counting Algorithms for Data Base Applications FOCS 1983, JCSS 1985.

Philippe Flajolet 1948-2011
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PCSA first step: Use hashing

Transform value to a “random” computer word. 
• Compute a hash function that transforms  

data value into a 32- or 64-bit value. 
• Cardinality count is unaffected (with high probability). 
• Built-in capability in modern systems. 
• Allows use of fast machine-code operations.

21st century: use 64 bits (quadrillions of values)
20th century: use 32 bits (millions of values)

String value = “gsearch.CS.Princeton.EDU” 
int x = value.hashCode();

 current Java default 
is 32-bit int value

Bottom line: Do cardinality estimation on streams of (binary) integers.

Example: Java 

• All data types implement a hashCode() method  
(though we often override the default). 

• String data type stores value (computed once).

“Random” except for the fact  
that some values are equal.
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Initial hypothesis

No problem! 

• AofA is a scientific endeavor (we always validate hypotheses). 

• End goal is development of algorithms that are useful in practice. 

• It is the responsibility of the designer to validate utility before claiming it. 

• After decades of experience, discovering a performance problem due to 
a bad hash function would be a significant research result.

Hypothesis. Uniform hashing assumption is reasonable in this context. 

Implication. Need to run experiments to validate any hypotheses about performance. 

Unspoken bedrock principle of AofA.  
     Experimenting to validate hypotheses is WHAT WE DO!
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Probabilistic counting starting point: three integer functions

Definition.  r (x) is the number of trailing 1s in the binary representation of x.

Definition.  R(x) = 2r
 
(x)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 p (x) r(x) R (x) R (x)2
1 0 1 1 1 1 0 1 1 1 1 1 0 1 0 1 12 1 2 1 0 

1 0 1 0 1 0 1 0 1 0 0 0 1 1 1 0 8 0 1 1 

0 1 1 0 1 0 0 1 0 1 0 1 1 1 1 1 10 5 32 1 0 0 0 0 0 

Bit-whacking magic: 
R(x) is easy to compute.

3 instructions 
on a typical 
computer

Exercise: Compute p (x) as easily.

position of rightmost 0

Definition.  p (x) is the number of 1s in the binary representation of x.

0 1 1 0 1 0 0 1 0 1 0 1 1 1 1 1 x
1 0 0 1 0 1 1 0 1 0 1 0 0 0 0 0 ~x
0 1 1 0 1 0 0 1 0 1 1 0 0 0 0 0 x + 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 ~x & (x + 1)

Note: r (x ) = p (R(x ) − 1).

Bottom line: p (x ), r (x ), and R(x ) all can be computed with just a few machine instructions.

Beeler, Gosper, and Schroeppel 
HAKMEM item 169, MIT AI Laboratory AIM 239, 1972

http://www.inwap.com/pdp10/hbaker/hakmem/hakmem.html

see also Knuth volume 4A
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Probabilistic counting (Flajolet and Martin, 1983)

Maintain a single-word sketch that summarizes a data stream x0, x1, …, xN, … 
• For each xN in the stream, update sketch by bitwise or with R(xN). 
• Use position of rightmost 0 (with slight correction factor) to estimate lg N.  

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sketch 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

xN 0 0 1 1 0 1 0 1 0 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 1 1 1

R(xN) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

sketch | R(xN) 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

typical sketch 
N = 106

leading bits almost surely 0 trailing bits almost surely 1

estimate of lg N

R(x) = 2k  
with probability  

1/ 2k

Rough estimate of lgN is r (sketch).

correction factor needed (stay tuned)  Rough estimate of N is R(sketch).
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Probabilistic counting trace 

x r(x) R(x) sketch

01100010011000111010011110111011 2 100 00000000000000000000000000000100

01100111001000110001111100000101 1 10 00000000000000000000000000000110

00010001000111000110110110110011 2 100 00000000000000000000000000000110

01000100011101110000000111011111 5 100000 00000000000000000000000000100110
01101000001011000101110001000100 0 1 00000000000000000000000000100111

00110111101100000000101001010101 1 10 00000000000000000000000000100111
00110100011000111010101111111100 0 1 00000000000000000000000000100111

00011000010000100001011100110111 3 1000 00000000000000000000000000101111

00011001100110011110010000111111 6 1000000 00000000000000000000000001101111
01000101110001001010110011111100 0 1 00000000000000000000000001101111

R(sketch) = 100002  
        = 16 
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Probabilistic counting (Flajolet and Martin, 1983)

public long R(long x) 
{ return ~x & (x+1); } 

public long estimate(Iterable<String> stream) 
{ 
   long sketch; 
   for (s : stream) 
      sketch = sketch | R(s.hashCode()); 
   return R(sketch); 
}

Early example of “a simple algorithm whose analysis isn’t”

Maintain a sketch of the data 
• A single word 
• OR of all values of R(x) in the stream 
• Return smallest value not seen

Q. (Martin) Estimate seems a bit low. How much?

A. (unsatisfying) Obtain correction factor empirically.

A. (Flajolet) Without the analysis, there is no algorithm!

 /.77351;
with correction for bias                     
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Mathematical analysis of probabilistic counting

Theorem. The expected number of trailing 1s in the PC sketch is 

and P is an oscillating function of lg N of very small amplitude.

Proof (omitted). 

1980s: Flajolet tour de force 

1990s: trie parameter 

21st century: standard AC

In other words. In PC code, R(sketch)/.77351 is an unbiased statistical estimator of N. 

lg(�N) + P(lgN) + o(1) where  𝜙 ≐�.77351

Kirschenhofer, Prodinger, and Szpankowski 

Analysis of a splitting process arising in probabilistic counting and other related algorithms, ICALP 1992.

highest null 
left of 

right spine

trailing 1s 
in sketch

stay tuned for  
Szpankowski talk

Jacquet and Szpankowski 

Analytical depoissonization and its applications, TCS 1998.
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Validation of probabilistic counting

Flajolet and Martin: Result is “typically one binary order of magnitude off.” 

Of course! (Always returns a power of 2 divided by .77351.)

Quick experiment. 100,000 31-bit random values (20 trials)

  16384/.77351 =   21181 

  32768/.77351 =   42362 

  65536/.77351 =   84725 

                  …

Need to incorporate more experiments for more accuracy.

Hypothesis. Expected value returned is N for random values from a large range.
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Stochastic averaging

Goal: Perform  M independent PC experiments and average results.

Alternative 3: Stochastic averaging 
• Use second hash to divide stream into 2m independent streams 
• Use PC on each stream, yielding 2m sketches . 
• Compute mean = average number of trailing bits in the sketches. 
• Return 2mean/.77531.

key point: equal values 
all go to the same stream

Alternative 1: M independent hash functions? No, too expensive.

Alternative 2: M-way alternation? No, bad results for certain inputs.

01 02 03 04 01 02 03 04

01 01

02 02

03 03

04 04

01 02 03 04

01

02

03

04

10 11 39 21

09 07 07

11

23 22 22

31

11 09 07 23 31 07 22 22
21

39

10 11
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PCSA trace

x R(x) sketch[0] sketch[1] sketch[2] sketch[3]

1010011110111011 100 0000000000000000 0000000000000000 0000000000000100 0000000000000000

0001111100000101 10 0000000000000010 0000000000000000 0000000000000100 0000000000000000

0110110110110011 100 0000000000000010 0000000000000100 0000000000000100 0000000000000000

0000000111011111 100000 0000000000100010 0000000000000100 0000000000000100 0000000000000000

0101110001000100 1 0000000000100010 0000000000000101 0000000000000100 0000000000000000

0000101001010101 10 0000000000100010 0000000000000101 0000000000000100 0000000000000000

1010101111111100 1 0000000000100010 0000000000000101 0000000000000101 0000000000000000

0001011100110111 1000 0000000000101010 0000000000000101 0000000000000101 0000000000000000

1110010000111111 1000000 0000000000101010 0000000000000101 0000000000000101 0000000001000000

1010110011111101 10 0000000000101010 0000000000000101 0000000000000111 0000000001000000

0001110100110100 1 0000000000101011 0000000000000101 0000000000000111

0000000000101011 0000000000000101 0000000000000111 0000000001000000

r (sketch[ ] ) 2 1 3 0

M = 4use initial m bits 
for second hash
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Probabilistic counting with stochastic averaging in Java

public static long estimate(Iterable<Long> stream, int M) 
{ 
   long[] sketch = new long[M]; 
   for (long x : stream) 
   {   
      int k = hash2(x, M); 
      sketch[k] = sketch[k] | R(x); 
   } 
   int sum = 0; 
   for (int k = 0; k < M; k++) 
      sum += r(sketch[k]); 
   double mean = 1.0 * sum / M; 
   return (int) (M * Math.pow(2, mean)/.77351); 
}

Flajolet-Martin 1983

Idea. Stochastic averaging 

• Use second hash to split into 
M = 2m independent streams 

• Use PC on each stream, 
yielding 2m sketches . 

• Compute mean = average # 
trailing 1 bits in the sketches. 

• Return 2mean/.77351.

Q. Accuracy improves as M increases.

Q. How much?

Theorem (paraphrased to fit context of this talk).  

Under the uniform hashing assumption, PCSA 

• Uses 64M bits. 

• Produces estimate with a relative accuracy 
close to                .0.78/

�
M
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Validation of PCSA analysis

Hypothesis. Value returned is accurate to                 for random values from a large range.

Experiment. 1,000,000 31-bit random values, M = 1024 (10 trials)

% java PCSA 1000000 31 1024 10 
964416 
997616 
959857 
1024303 
972940 
985534 
998291 
996266 
959208 
1015329

0.78/
�
M
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Space-accuracy tradeoff for probabilistic counting with stochastic averaging

10245122561286432

10%

5%

Relative accuracy:
0.78�
M

Bottom line. 
• Attain 10% relative accuracy with a sketch consisting of 64 words. 
• Attain 2.4% relative accuracy with a sketch consisting of 1024 words.

M = 64

M = 1024
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Scientific validation of PCSA

Hypothesis. Accuracy is as specified for the hash functions we use and the data we have.

Q. Is PCSA effective?

A. ABSOLUTELY!

Validation (Flajolet and Martin, 1985). Extensive reproducible scientific experiments (!)

% java PCSA 6000000 1024 < log.07.f3.txt 
1106474

Validation (RS, this morning).

<1% larger than actual value
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is a demonstrably effective approach to cardinality estimation

Summary: PCSA (Flajolet-Martin, 1983)

Q. About how many different values are present in a given stream?

PCSA 

• Makes one pass through the stream. 
• Uses a few machine instructions per value 
• Uses M words to achieve relative accuracy         

Open questions 
• Better space-accuracy tradeoffs? 
• Support other operations?

✓
Results validated through extensive experimentation.

0.78/
�
M

A poster child for AofA/AC

“ IT IS QUITE CLEAR that other observable regularities on hashed 
values of records could have been used…

− Flajolet and Martin
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 Small sample of work on related problems

1970 Bloom set membership

1984 Wegman unbiased sampling estimate

1996– many authors refinements (stay tuned)

2000 Indyk L1 norm

2004 Cormode–
Muthukrishnan

frequency estimation 
deletion and other operations

2005 Giroire fast stream processing

2012 Lumbroso full range, asymptotically unbiased

2014 Helmi–Lumbroso–
Martinez–Viola uses neither sampling nor hashing
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Theorem (paraphrased to fit context of this talk).  
With strongly universal hashing, PC, for any c >2, 
• Uses O(log N ) bits. 
• Is accurate to a factor of c, with probability at least 2/c.

34

We can do better (in theory)

Contributions 

• Studied problem of estimating higher moments 

• Formalized idea of randomized streaming algorithms   

• Won Gödel Prize in 2005 for “foundational contribution”

Alon, Matias, and Szegedy 
  The Space Complexity of Approximating the Frequency Moments 
  STOC 1996; JCSS 1999.

BUT, no impact on cardinality estimation in practice 

• “Algorithm” just changes hash function for PC 

• Accuracy estimate is too weak to be useful   

• No validation 

Replaces “uniform hashing” assumption 
with “random bit existence” assumption

???!
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Interesting quote

Points of view re hashing 

• Theoretical computer science. Uniform hashing assumption is not proved. 

• Practical computing. Hashing works for many common data types.  

• AofA. Extensive experiments have validated precise analytic models.

Points of view re random bits 

• Theoretical computer science. Axiomatic that random bits exist. 

• Practical computing. No, they don’t ! And randomized algorithms are inconvenient, btw. 

• AofA. More effective path forward is to validate precise analysis even if stronger assumptions are needed.

No! They hypothesized that practical hash functions would be as effective as random ones. 
They then validated that hypothesis by proving tight bounds that match experimental results. 

“ Flajolet and Martin [assume] that one may use in the algorithm 
an explicit family of hash functions which exhibits some ideal 
random properties. Since we are not aware of the existence of 
such a family of hash functions …”

− Alon, Matias, and Szegedy
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logs and loglogs

To improve space-time tradeoffs, we need to carefully count bits.

Relevant quantities 
• N is the number of items in the data stream.  
• lg N is the number of bits needed to represent numbers less than N in binary.  
• lg lg N is the number of bits needed to represent numbers less than lg N in binary.         

For real-world applications 
• N is less than 264.  
• lg N is less than 64.  
• lg lg N is less than 8.         

Typical PCSA implementations 
• Could use M lg N bits, in theory. 
• Use 64-bit words to take advantage of machine-language efficiencies.  
• Use (therefore) 64*64 = 4096 bits with M = 64 (for 10% accuracy with N < 264).
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We can do better (in theory)

Bar-Yossef, Jayram, Kumar, Sivakumar, and Trevisan 
  Counting Distinct Elements in a Data Stream 
  RANDOM 2002.

STILL no impact on cardinality estimation in practice 

• Infeasible because of high stream-processing expense. 

• Big constants hidden in O-notation   

• No validation 

???!

Contribution 
    Improves space-accuracy tradeoff at extra stream-processing expense.

Theorem (paraphrased to fit context of this talk).  
With strongly universal hashing, there exists an algorithm that 
• Uses O(M log log N ) bits. 
• Achieves relative accuracy                .O(1/

�
M)

PCSA uses M lg N bits



38

We can do better (in theory and in practice)

Not much impact on cardinality estimation in practice only because 

• PCSA was effectively deployed in practical systems 

• Idea led to a better algorithm a few years later (stay tuned)

Durand and Flajolet 
  LogLog Counting of Large Cardinalities 
  ESA 2003; LNCS volume 2832.

Contributions (independent of BYJKST) 

• Presents LogLog algorithm, an easy variant of PCSA 

• Improves space-accuracy tradeoff without extra expense per value  

• Full analysis, fully validated with experimentation 

I like PCSA

Theorem (paraphrased to fit context of this talk).  
Under the uniform hashing assumption, LogLog 

• Uses M lg lg N bits. 
• Achieves relative accuracy close to                .1.30/

�
M

PCSA saves sketches (lg N bits each)
00000000000000000000000001101111

LogLog saves r() values (lglg N bits each)

00100  ( = 4)
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We can do better (in theory and in practice): HyperLogLog algorithm (2007)

public static long estimate(Iterable<Long> stream, int M) 
{ 
   int[] bytes = new int[M]; 
   for (long x : stream) 
   {   
      int k = hash2(x, M); 
      if (bytes[k] < Bits.r(x)) bytes[k] = Bits.r(x); 
   } 
   double sum = 0.0; 
   for (int k = 0; k < M; k++) 
      sum += Math.pow(2, -1.0 - bytes[k]); 
   return (int) (alpha * M * M / sum); 
}

Flajolet-Fusy-Gandouet-Meunier 2007

Flajolet, Fusy, Gandouet, and Meunier 

HyperLogLog: the analysis of a near-

optimal cardinality estimation algorithm 

AofA 2007; DMTCS 2007.

Theorem (paraphrased to fit context of this talk).  
Under the uniform hashing assumption, HyperLogLog 

• Uses M log log N bits. 
• Achieves relative accuracy close to                .1.02/

�
M

about .709 for M = 64 

Idea. Harmonic mean of r() values 

• Use stochastic splitting 

• Keep track of min(r (x)) for 
each stream 

• Return harmonic mean.

8-bit bytes (code to pack into 
M loglogN bits omitted)
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Space-accuracy tradeoff for HyperLogLog

102451225612864

10%

5%

Relative accuracy:

Bottom line (for N < 264). 
• Attain 10% relative accuracy with a sketch consisting of 108x6 =  648 bits. 
• Attain 3.1% relative accuracy with a sketch consisting of 1024x6 = 6144 bits.

1.02�
M

Yay!

M = 64

M = 1024
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PCSA vs Hyperloglog

Typical PCSA implementations 
• Could use M lg N bits, in theory. 
• Use 64-bit words to take advantage of machine-language efficiencies.  
• Use (therefore) 64*64 = 4096 bits with M = 64 (for 10% accuracy with N < 264).

Typical Hyperloglog implementations 
• Could use M lg lg N bits, in theory. 
• Use 8-bit bytes to take advantage of machine-language efficiencies.  
• Use (therefore) 108*8 = 864 bits with M = 108 (for 10% accuracy with N < 264).
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Validation of Hyperloglog

S. Heule, M. Nunkesser and A. Hall 
HyperLogLog in Practice: Algorithmic Engineering of a State of The Art Cardinality Estimation Algorithm. 
Extending Database Technology/International Conference on Database Theory 2013.

Philippe Flajolet, mathematician, data scientist, and computer scientist extraordinaire
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Cardinality Estimation

•Rules of the game 
•Probabilistic counting 
•Stochastic averaging 
•Refinements 
•Final frontier
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We can do a bit better (in theory) but not much better

Kane, Nelson, and Woodruff 
  Optimal Algorithm for the Distinct Elements Problem, PODS 2010.

Upper bound

Lower bound

Theorem (paraphrased to fit context of this talk). 
With strongly universal hashing there exists an algorithm that 
• Uses O(M ) bits. 
• Achieves relative accuracy                .

Unlikely to have impact on cardinality estimation in practice 

• Tough to beat HyperLogLog’s  low stream-processing expense. 

• Constants hidden in O-notation not likely to be < 6  

• No validation 

O(1/
�
M)

Indyk and Woodruff 
  Tight Lower Bounds for the Distinct Elements Problem, FOCS 2003.

Theorem (paraphrased to fit context of this talk). 
Any algorithm that achieves relative accuracy                 must use          bitsO(1/

�
M) Ω(M)

loglogN improvement possible

optimal
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Can we beat HyperLogLog in practice?

Also, results need to be validated through extensive experimentation.

Necessary characteristics of a better algorithm 
• Makes one pass through the stream. 
• Uses a few dozen machine instructions per value 
• Uses a few hundred bits 
• Achieves 10% relative accuracy or better        

machine instructions 
per stream element

memory 
bound

memory bound 
when N < 264

# bits for 
10% accuracy 
when N < 264

HyperLogLog 20–30 M loglog N 6M 648

BetterAlgorithm a few dozen a few 
hundred

I love HyperLogLog

“ I’ve long thought that there should be a simple algorithm that uses a small constant times M bits…”

− Jérémie Lumbroso



46

A proposal: HyperBitBit (Sedgewick, 2016)

public static long estimate(Iterable<String> stream, int M) 
{ 
   int lgN = 5; 
   long sketch = 0; 
   long sketch2 = 0; 
   for (String x : stream) 
   { 
      long x = hash(s); 
      int k = hash2(x, 64); 
      if (r(x) > lgN)     sketch  = sketch  | (1L << k); 
      if (r(x) > lgN + 1) sketch2 = sketch2 | (1L << k); 
      if (p(sketch) > 31) 
      { sketch = sketch2; lgN++; sketch2 = 0; } 
   } 
   return (int) (Math.pow(2, lgN + 5.4 + p(sketch)/32.0)); 
}

Idea. 

• lgN is estimate of 

• sketch is 64 indicators 
  whether to increment lgN 

• sketch2 is is 64 indicators 
  whether to increment lgN 
 by 2 

• Update when half the bits  
    in sketch are 1 

• correct with p(sketch)

lgN

bias factor (determined empirically)

and bias factor

Q. Does this even work?
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Initial experiments

% java Hash 1000000 < log.07.f3.txt 
242601 
% java Hash 2000000 < log.07.f3.txt 
483477 
% java Hash 4000000 < log.07.f3.txt 
883071 
% java Hash 6000000 < log.07.f3.txt 
1097944

Exact values for web log example

% java HyperBitBit 1000000 < log.07.f3.txt 
234219 
% java HyperBitBit 2000000 < log.07.f3.txt 
499889 
% java HyperBitBit 4000000 < log.07.f3.txt 
916801 
% java HyperBitBit 6000000 < log.07.f3.txt 
1044043

HyperBitBit estimates

Conjecture. On practical data, HyperBitBit, for N < 264,  
• Uses 128 + 6 bits. 
• Estimates cardinality within 10% of the actual.

1,000,000 2,000,000 4,000,000 6,000,000

Exact 242,601 483,477 883,071 1,097,944

HyperBitBit 234,219 499,889 916,801 1,044,043

ratio 1.05 1.03 0.96 1.03

Next steps.  
• Analyze. 
• Experiment. 
• Iterate
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 Summary/timeline for cardinality estimation

hashing 
assumption

feasible 
and 

validated?
memory 

bound (bits)
relative 

accuracy 
constant

# bits for 
10% accuracy 
when N < 264

1970 Bloom Bloom filter uniform ✓ kN > 264

1985 Flajolet-Martin PCSA uniform ✓ M log N 0.78 4096

1996 Alon–Matias–Szegedy [theorem] strong 
universal ✗ O(M log N ) O(1) ?

2002
Bar–Yossef–Jayram–
Kumar–Sivakumar–

Trevisan
[theorem] strong 

universal ✗ O(M log log N ) O(1) ?

2003 Durand–Flajolet LogLog uniform ✓ M lglg N 1.30 1536

2007 Flajolet–Fusy–
Gandouet–Meunier HyperLogLog uniform ✓ M lglg N 1.04 648

2010 Kane–Nelson–
Woodruff [theorem] strong 

universal ✗ O(M ) + lglg N O(1) ?

2018+ RS–? HyperBitBit uniform ✓(?) 2M  + lglg N ? 134 (?)
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Happy Birthday, Don!

Anders Björner 
Mireille Bousquet-Mélou 
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Martin Ruckert
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Jeffrey Shallit
Richard Stanley

Wojtek Szpankowski 
Bob Tarjan

Greg Tucker
Andrew Yao
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Don Knuth’s 

80th birthday
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http://knuth80.elfbrink.se
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with special thanks to Jérémie Lumbroso

Robert Sedgewick 
Princeton University


